Journal of Molecular Modeling

, Volume 18, Issue 6, pp 2461–2469 | Cite as

Polarization-induced σ-holes and hydrogen bonding

  • Matthias Hennemann
  • Jane S. Murray
  • Peter Politzer
  • Kevin E. Riley
  • Timothy Clark
Original Paper

Abstract

The strong collinear polarizability of the A–H bond in A–H⋅⋅⋅B hydrogen bonds is shown to lead to an enhanced σ-hole on the donor hydrogen atom and hence to stronger hydrogen bonding. This effect helps to explain the directionality of hydrogen bonds, the well known cooperative effect in hydrogen bonding, and the occurrence of blue-shifting. The latter results when significant additional electron density is shifted into the A–H bonding region by the polarization effect. The shift in the A–H stretching frequency is shown to depend essentially linearly on the calculated atomic charge on the donor hydrogen for all donors in which A belongs to the same row of the periodic table. A further result of the polarization effect, which is also expected for other σ-hole bonds, is that the strength of the non-covalent interaction depends strongly on external electric fields.

Figure

Contour diagram of the difference in MEP between water polarized by a point charge of magnitude −0.2762 at a distance of 1.946 Å and unperturbed water. The polarization is strongly directional along the O–HDonor bond vector

Keywords

Hydrogen bond σ-hole Polarization Ab initio calculation Field effect 

Supplementary material

894_2011_1263_MOESM1_ESM.doc (50 kb)
Esm 1(DOC 49 kb)

References

  1. 1.
    Latimer WM, Rodebush WH (1920) J Am Chem Soc 42:1419–1433CrossRefGoogle Scholar
  2. 2.
    Werner A (1902) Liebigs Ann Chem 322:261–296CrossRefGoogle Scholar
  3. 3.
    Werner A (1903) Chem Ber 36:147–159CrossRefGoogle Scholar
  4. 4.
    Moore TS, Winmill TF (1912) J Chem Soc 101:1635–1676CrossRefGoogle Scholar
  5. 5.
    Pfeiffer P, Fischer P, Kunter J, Monti P, Pros Z (1913) Liebigs Ann Chem 398:137–196CrossRefGoogle Scholar
  6. 6.
    Arunan E (1999) Curr Sci 77:1233–1235Google Scholar
  7. 7.
    Scheiner S (1997) Hydrogen bonding. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Jeffrey GA (1997) Introduction to hydrogen bonding. Oxford University Press, OxfordGoogle Scholar
  9. 9.
    Desiraju G, Steiner T (1997) The weak hydrogen bond. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Muller-Dethlefs K, Hobza P (2000) Chem Rev 100:143–168CrossRefGoogle Scholar
  11. 11.
    Hobza P, Havlas Z (2000) Chem Rev 100:4253–4264CrossRefGoogle Scholar
  12. 12.
    Belkova NV, Shubina ES, Epstein LM (2005) Acc Chem Res 38:624–631CrossRefGoogle Scholar
  13. 13.
    Grabowski SJ (ed) (2006) Hydrogen bonding—new insights. Springer, Dordrecht, The NetherlandsGoogle Scholar
  14. 14.
    Grabowski SJ, Sokalski WA, Leszczynski J (2006) Chem Phys Lett 432:33–39CrossRefGoogle Scholar
  15. 15.
    de Oliveira BG, Ramos MN (2010) Int J Quantum Chem 110:307–316CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63:1598–1607CrossRefGoogle Scholar
  18. 18.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  19. 19.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  20. 20.
    Murray JS, Lane P, Clark T, Riley KE, Politzer P (2011) J Mol Model. doi:10.1007/s00894-011-1089-1
  21. 21.
    Fielder L, Gao J, Truhlar DG (2011) J Chem Theor Comput 7:852–856CrossRefGoogle Scholar
  22. 22.
    Ermer O, Lifson S (1973) J Am Chem Soc 95:4121–4132CrossRefGoogle Scholar
  23. 23.
    Burkert U, Allinger NL (1972) Molecular mechanics—ACS Monograph 177. American Chemical Society, Washington DCGoogle Scholar
  24. 24.
    Wilson CC (2000) Single crystal neutron diffraction from molecular materials. World Scientific, SingaporeGoogle Scholar
  25. 25.
    Parkin A, Harte SM, Goeta AE, Wilson CC (2004) New J Chem 28:718–721CrossRefGoogle Scholar
  26. 26.
    Jug K, Geutner G (1993) J Comput Chem 14:639–646CrossRefGoogle Scholar
  27. 27.
    Hermansson K (2002) J Phys Chem A 106:4695–4702CrossRefGoogle Scholar
  28. 28.
    Pejov L, Hermanssno K (2003) J Chem Phys 119:313–324CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc, Wallingford CTGoogle Scholar
  30. 30.
    Dunning TH Jr (1980) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  31. 31.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  32. 32.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506CrossRefGoogle Scholar
  33. 33.
    Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkGoogle Scholar
  34. 34.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7679CrossRefGoogle Scholar
  35. 35.
    Riley KE, Murray JS, Concha MC, Hobza P, Politzer P (2009) J Chem Theor Comput 5:155–163CrossRefGoogle Scholar
  36. 36.
    Shields ZP, Murray JS, Politzer P (2010) Int J Quantum Chem 110:2823–2832CrossRefGoogle Scholar
  37. 37.
    Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) J Mol Model. doi:10.1007/s00894-011-1015-6
  38. 38.
    Murray JS, Politzer P (1991) J Org Chem 56:6715–6717CrossRefGoogle Scholar
  39. 39.
    Hagelin H, Murray JS, Brinck T, Berthelot M, Politzer P (1995) Can J Chem 73:483–488CrossRefGoogle Scholar
  40. 40.
    Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038CrossRefGoogle Scholar
  41. 41.
    Murray JS, Lane P, Politzer P (2007) J Quantum Chem 107:2286–2292CrossRefGoogle Scholar
  42. 42.
    Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729CrossRefGoogle Scholar
  43. 43.
    Politzer P, Murray JS (2009) An overview of σ-hole bonding: an important and widely occurring noncovalent interaction. In: Leszczynski J, Shukla MK (eds) Practical aspects of computational chemistry. Springer, AmsterdamGoogle Scholar
  44. 44.
    Riley KE, Hobza P (2008) J Chem Theor Comput 4:232–242CrossRefGoogle Scholar
  45. 45.
    Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) J Mol Model 14:699–704CrossRefGoogle Scholar
  46. 46.
    Politzer P, Murray JS, Lane P (2009) Int J Quantum Chem 109:534–539CrossRefGoogle Scholar
  47. 47.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746CrossRefGoogle Scholar
  48. 48.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  49. 49.
    See, for instance Parker LL, Houk AR, Jensen JH (2006) J Am Chem Soc 128:9863–9872Google Scholar
  50. 50.
    Barrachin B, Cohen de Lara E (1986) J Chem Soc. Faraday Trans 2(82):1953–1966Google Scholar
  51. 51.
    Nakagawa K, Suzuki S, Fujii R, Gardiner AT, Cogdell RJ, Nango M, Hashimoto H (2008) J Phys Chem B 112:9467–9475CrossRefGoogle Scholar
  52. 52.
    Politzer P, Clark T (2005) Mol Phys 10:891–895CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Matthias Hennemann
    • 1
  • Jane S. Murray
    • 2
  • Peter Politzer
    • 2
  • Kevin E. Riley
    • 3
  • Timothy Clark
    • 1
    • 4
  1. 1.Computer-Chemie-ZentrumFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.CleveTheoCompClevelandUSA
  3. 3.Institute for Organic Chemistry and BiochemistryAcademy of Science of the Czech RepublicPrague 6Czech Republic
  4. 4.Center for Molecular DesignUniversity of PortsmouthPortsmouthUK

Personalised recommendations