Journal of Molecular Modeling

, Volume 18, Issue 6, pp 2387–2398 | Cite as

Are formal oxidation states above one viable in cyclopentadienylcopper cyanides?

  • Congzhi Wang
  • Xiuhui Zhang
  • Qian-shu Li
  • Yaoming Xie
  • R. Bruce King
  • Henry F. SchaeferIII
Original Paper


Recent experiments have led to the discovery of the thermally unstable organocopper compounds (η3-C3H5)CuMe2, [(η3-C3H5)CuMe3], and CuMe 4 in which the copper atom is in the +3 formal oxidation state. In a quest for more stable organocopper compounds with copper in formal oxidation states above one, the binuclear cyclopentadienylcopper cyanides Cp2Cu2(CN) n (Cp = η5-C5H5; n = 1, 2, 3) have been studied using density functional theory (DFT). The lowest energy structures are found to have terminal Cp rings and bridging cyanide ligands up to a maximum of two bridges. Higher-energy Cp2Cu2(CN) n (n = 1, 2, 3) structures are found with bridging Cp rings. The Cp2Cu2(CN)3 derivatives, with the copper atoms in an average +2.5 oxidation state, are clearly thermodynamically disfavored with respect to cyanogen loss. However, Cp2Cu2(CN)2 and Cp2Cu2(CN), with the copper atoms in the average oxidation states +1.5 and +2, respectively, are predicted to have marginal viability. The prospects for the copper(II) derivative Cp2Cu2(CN)2 contrast with that of the “simple” Cu(CN)2, which is shown both experimentally and theoretically to be unstable with respect to cyanogen loss to give CuCN.


Cp2Cu2(CN),Cp2Cu2(CN) 2 , Cp2Cu2(CN) 3


Copper Cyclopentadienylcopper cyanide Oxidation states Density functional theory 



We are indebted to the Chinese National Natural Science Foundation (20903010 and 20873045), Research Fund for the Doctoral Program of Higher Education (200800071019), China Postdoctoral Science Foundation funded project in China as well as the U. S. National Science Foundation (Grants CHE-1054286 and CHE-0716718) for support of this research.

Supplementary material

894_2011_1251_MOESM1_ESM.doc (820 kb)
ESM 1 (DOC 820 kb)


  1. 1.
    Bartholomew ER, Bertz SH, Cope SK, Murphy MD, Ogle CA (2008) J Am Chem Soc 130:11244–11245CrossRefGoogle Scholar
  2. 2.
    Bartholomew ER, Bertz SH, Cope SK, Murphy MD, Ogle CA, Thomas AA (2010) Chem Commun 46:1253–1254CrossRefGoogle Scholar
  3. 3.
    Gv K, Jastrzebski JTBH, Lamsabhi AM, Yáñez M, Salpin JY, Tortajada J (2009) In: Rappoport Z, Marek I (eds) The chemistry of organocopper compounds. Wiley, Chichester, pp 23–346Google Scholar
  4. 4.
    Bennett MV, Shores MP, Beauvais LG, Long JR (2000) J Am Chem Soc 122:6664–6668CrossRefGoogle Scholar
  5. 5.
    Kuyper J, Boxhoorn G (1987) J Catal 105:163–174CrossRefGoogle Scholar
  6. 6.
    Miller J (2001) S, Manson JL. Acc Chem Res 34:563–570CrossRefGoogle Scholar
  7. 7.
    Beauvais LG, Long JR (2002) J Am Chem Soc 124:12096–12097CrossRefGoogle Scholar
  8. 8.
    Dunbar KR, Heintz RA (1997) Prog Inorg Chem 45:283–391CrossRefGoogle Scholar
  9. 9.
    Ohba M, Fukita N, Okawa H (1997) J Chem Soc Dalton Trans 1733–1737Google Scholar
  10. 10.
    Richardson GN, Brand U, Vahrenkamp H (1999) Inorg Chem 38:3070–3079CrossRefGoogle Scholar
  11. 11.
    Zhu N, Vahrenkamp H (1997) Chem Ber 130:1241–1252CrossRefGoogle Scholar
  12. 12.
    Colacio E, Kivekas R, Lloret F, Sunberg M, Suarez-Varela J, Bardaji M, Laguna A (2002) Inorg Chem 41:5141–5149CrossRefGoogle Scholar
  13. 13.
    Komatsu T, Nakamura T, Matsukawa N, Yamochi H, Saito G, Ito H, Ishiguro T, Kusonoki M, Sakaguchi K (1991) Solid State Commun 80:843–847CrossRefGoogle Scholar
  14. 14.
    Drozdova O, Saito G, Yamochi H, Ookubo K, Yakushi K, Uruichi M, Ouahab L (2001) Inorg Chem 40:3265–3266CrossRefGoogle Scholar
  15. 15.
    Fanta PE (1964) Chem Rev 64:613–632CrossRefGoogle Scholar
  16. 16.
    Cotton FA, Marks T (1969) J J Am Chem Soc 91:7281–7285CrossRefGoogle Scholar
  17. 17.
    Cotton FA, Takats J (1970) J Am Chem Soc 92:2353–2358CrossRefGoogle Scholar
  18. 18.
    Whitesides GM, Fleming JS (1967) J Am Chem Soc 89:2855–2859CrossRefGoogle Scholar
  19. 19.
    Cotton FA, Marks TJ (1970) J Am Chem Soc 92:5114–5117CrossRefGoogle Scholar
  20. 20.
    Piper TS, Wilkinson G (1956) J Inorg Nucl Chem 1:165–174CrossRefGoogle Scholar
  21. 21.
    Akbayeva DN, Scherer OJ (2001) Z Anorg Allgem Chem 627:1429–1430CrossRefGoogle Scholar
  22. 22.
    Saegusa T, Ito Y, Tomita S (1971) J Am Chem Soc 93:5656–5661CrossRefGoogle Scholar
  23. 23.
    Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry. Wiley, New York, Ch 17HGoogle Scholar
  24. 24.
    Duggan DM, Jungst RG, Mann KR, Stucky GD, Hendrickson DN (1974) J Am Chem Soc 96:3443–3450CrossRefGoogle Scholar
  25. 25.
    Zhan SZ, Li W, Wang JG, Liang AQ, Deng YF (2007) J Organomet Chem 692:3568–3573CrossRefGoogle Scholar
  26. 26.
    Ehlers AW, Frenking G (1994) J Am Chem Soc 116:1514–1520CrossRefGoogle Scholar
  27. 27.
    Delley B, Wrinn M, Lüthi HP (1994) J Chem Phys 100:5785–5791CrossRefGoogle Scholar
  28. 28.
    Li J, Schreckenbach G, Ziegler T (1995) J Am Chem Soc 117:486–494CrossRefGoogle Scholar
  29. 29.
    Jonas V, Thiel W (1995) J Chem Phys 102:8474–8484CrossRefGoogle Scholar
  30. 30.
    Barckholtz TA, Bursten BE (1998) J Am Chem Soc 120:1926–1927CrossRefGoogle Scholar
  31. 31.
    Jemmis ED, Giju KT (1998) J Am Chem Soc 120:6952–6964CrossRefGoogle Scholar
  32. 32.
    Niu S, Hall MB (2000) Chem Rev 100:353–406CrossRefGoogle Scholar
  33. 33.
    Cotton FA, Gruhn NE, Gu J, Huang P, Lichtenberger DL, Murillo C, van Dorn LO, Wilkinson CC (2002) Science 298:1971–1974CrossRefGoogle Scholar
  34. 34.
    Macchi P, Sironi A (2003) Coord Chem Rev 238:383–412CrossRefGoogle Scholar
  35. 35.
    Borowski T, Georgiev V, Siegbahn PEM (2005) J Am Chem Soc 127:17303–17314CrossRefGoogle Scholar
  36. 36.
    Ziegler T, Autschbach J (2005) Chem Rev 105:2695–2722CrossRefGoogle Scholar
  37. 37.
    Mota AJ, Dedieu A, Bour C, Suffert J (2005) J Am Chem Soc 127:7171–7182CrossRefGoogle Scholar
  38. 38.
    Bühl M, Kabrede H (2006) J Chem Theor Comput 2:1282–1290CrossRefGoogle Scholar
  39. 39.
    Brynda M, Gagliardi L, Widmark PO, Power PP, Roos BO (2006) Angew Chem Int Edn 45:3804–3807CrossRefGoogle Scholar
  40. 40.
    Zhao Y, Truhlar DG (2006) J Chem Phys 124:224105CrossRefGoogle Scholar
  41. 41.
    Strickland NS, Harvey JN (2007) J Phys Chem B 111:841–852CrossRefGoogle Scholar
  42. 42.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  43. 43.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  44. 44.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  45. 45.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  46. 46.
    Feng X, Gu J, Xie Y, King RB, Schaefer HF (2007) J Chem Theor Comput 3:1580–1587CrossRefGoogle Scholar
  47. 47.
    Zhao S, Wang W, Li Z, Liu ZP, Fan K, Xie Y, Schaefer HF (2006) J Chem Phys 124:184102CrossRefGoogle Scholar
  48. 48.
    Dunning TH (1970) J Chem Phys 53:2823–2833CrossRefGoogle Scholar
  49. 49.
    Dunning TH, Hay PJ (1977) In: Schaefer HF (ed) Methods of electronic structure theory. Plenum, New York, pp 1–27Google Scholar
  50. 50.
    Huzinaga S (1965) J Chem Phys 42:1293–1302CrossRefGoogle Scholar
  51. 51.
    Wachters AJH (1970) J Chem Phys 52:1033–1036CrossRefGoogle Scholar
  52. 52.
    Hood DM, Pitzer RM, Schaefer HF (1979) J Chem Phys 71:705–812CrossRefGoogle Scholar
  53. 53.
    Frisch MJ et al. (2004) Gaussian 03, Revision C 02. Gaussian Inc, Wallingford, CT (see Supporting Information for details)Google Scholar
  54. 54.
    Papas BN, Schaefer HF (2006) J Mol Struct THEOCHEM 768:175–181CrossRefGoogle Scholar
  55. 55.
    Al-Obaidi A, Baranovic G, Coyle J, Coates CG, McGarvey JJ, McKee V, Nelson J (1998) Inorg Chem 37:3567–3574CrossRefGoogle Scholar
  56. 56.
    Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48–55CrossRefGoogle Scholar
  57. 57.
    Szalay PS, Dunbar KR (2000) Inorg Chem Commun 3:49–51CrossRefGoogle Scholar
  58. 58.
    Richardson DE, Taube H (1984) Coord Chem Rev 60:107–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Key Laboratory of Cluster Science, Ministry of Education of China, Department of ChemistryBeijing Institute of TechnologyBeijingPeoples Republic of China
  2. 2.Institute of Chemical PhysicsBeijing Institute of TechnologyBeijingPeoples Republic of China
  3. 3.Center for Computational Quantum Chemistry, School of Chemistry and EnvironmentSouth China Normal UniversityGuangzhouPeoples Republic of China
  4. 4.Department of Chemistry and Center for Computational ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations