Journal of Molecular Modeling

, Volume 18, Issue 5, pp 1779–1790 | Cite as

Conformational changes in 2-trans-enoyl-ACP (CoA) reductase (InhA) from M. tuberculosis induced by an inorganic complex: a molecular dynamics simulation study

  • André L. P. da Costa
  • Ivani Pauli
  • Márcio Dorn
  • Evelyn K. Schroeder
  • Chang-Guo Zhan
  • Osmar Norberto de SouzaEmail author
Original Paper


InhA, the NADH-dependent 2-trans-enoyl-ACP reductase enzyme from Mycobacterium tuberculosis (MTB), is involved in the biosynthesis of mycolic acids, the hallmark of mycobacterial cell wall. InhA has been shown to be the primary target of isoniazid (INH), one of the oldest synthetic antitubercular drugs. INH is a prodrug which is biologically activated by the MTB catalase-peroxidase KatG enzyme. The activation reaction promotes the formation of an isonicotinyl-NAD adduct which inhibits the InhA enzyme, resulting in reduction of mycolic acid biosynthesis. As a result of rational drug design efforts to design alternative drugs capable of inhibiting MTB’s InhA, the inorganic complex pentacyano(isoniazid)ferrate(II) (PIF) was developed. PIF inhibited both wild-type and INH-resistant Ile21Val mutants of InhA and this inactivation did not require activation by KatG. Since no three-dimensional structure of the InhA-PIF complex is available to confirm the binding mode and to assess the molecular interactions with the protein active site residues, here we report the results of molecular dynamics simulations of PIF interaction with InhA. We found that PIF strongly interacts with InhA and that these interactions lead to macromolecular instabilities reflected in the long time necessary for simulation convergence. These instabilities were mainly due to perturbation of the substrate binding loop, particularly the partial denaturation of helices α6 and α7. We were also able to correlate the changes in the SASAs of Trp residues with the recent spectrofluorimetric investigation of the InhA-PIF complex and confirm their suggestion that the changes in fluorescence are due to InhA conformational changes upon PIF binding. The InhA-PIF association is very strong in the first 20.0 ns, but becomes very week at the end of the simulation, suggesting that the PIF binding mode we simulated may not reflect that of the actual InhA-PIF complex.


Conformational changes in 2-trans-enoyl-ACP (CoA) reductase (InhA) from M. tuberculosis induced by an inorganic complex


Conformational changes FAS-II pathway InhA Molecular dynamics simulations Mycobacterium tuberculosis Pentacyano(isoniazid)ferrate(II) 



We would like to thank Luís Fernando Saraiva Macedo Timmers for his technical assistance. We thank the Laboratório de Alto Desempenho (LAD), at Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), for CPU time. This project was supported all or in part by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Ministério da Ciência e Tecnologia (MCT) – Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – Departamento de Ciência e Tecnologia (DECIT), (Processes numbers 410505/2006-4, 554782/2008-1, 302641/2009-2, 551209/2010-0, 559917/2010-4) to Osmar Norberto de Souza and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB) – CNPq to Prof. Diógenes Santiago Santos and Programa de Apoio a Núcleos de Excelência 2009/FAPERGS to Prof. Luiz Augusto Basso. André L. P. da Costa was partially supported by a CAPES M.Sc. scholarship. Ivani Pauli was supported by a CAPES M.Sc scholarship. Márcio Dorn was supported by a CNPq M.Sc. scholarship. Osmar Norberto de Souza is a CNPq Research Fellow.


  1. 1.
    Schaeffer ML, Agnihotri G, Volke C, Kallender H, Brennan BJ, Lonsdale JTI (2001) Purification and biochemical characterization of the Mycobacterium tuberculosis beta-Ketoacyl-Acyl Carrier Protein Synthases KasA and KasB. J Biol Chem 276:47029–47037CrossRefGoogle Scholar
  2. 2.
    Ratledge C (1982) The biology of mycobacteria. Academic Press, San DiegoGoogle Scholar
  3. 3.
    Takayama K, Qureshi N (1982) In: Kubica GP, Wayne LG (eds) The mycobacteria: a sourcebook. Marcel Dekker, New YorkGoogle Scholar
  4. 4.
    Schroeder EK, Norberto de Souza O, Santos DS, Blanchard JS, Basso LA (2002) Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis. Curr Pharm Biotech 3:197–225CrossRefGoogle Scholar
  5. 5.
    Mdluli K, Slayden RA, Zhu Y, Ramaswamy S, Pan X, Mead D, Crane DD, Musser JM, Barry CE III (1998) Inhibition of a Mycobacterium tuberculosis beta-Ketoacyl ACP Synthase by Isoniazid. Science 280:1607–1610CrossRefGoogle Scholar
  6. 6.
    Chatterjee D (1997) The mycobacterial cell wall: structure, biosynthesis and sites of drug action. Curr Opin Chem Biol 4:579–588CrossRefGoogle Scholar
  7. 7.
    Quémard A, Sacchettini JC, Dessen A, Vilcheze C, Bittman R, Jacobs WR, Blanchard JS (1995) Enzymic characterization of the target for Isoniazid in Mycobacterium tuberculosis. Biochemistry 34:8235–8241CrossRefGoogle Scholar
  8. 8.
    Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230CrossRefGoogle Scholar
  9. 9.
    Lavender C, Globan M, Sievers A, Jacobe HB, Fyfe J (2005) Molecular characterization of Isoniazid-resistant Mycobacterium tuberculosis isolates collected in Australia. Antimicrob Agents Chemother 49:4068–4074CrossRefGoogle Scholar
  10. 10.
    Johnsson K, King DS, Schultz PG (1995) Studies on the mechanism of action of Isoniazid and Ethionamide in the chemotherapy of tuberculosis. J Am Chem Soc 117:009–5010Google Scholar
  11. 11.
    Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593CrossRefGoogle Scholar
  12. 12.
    Baker LV, Brown TJ, Maxwell O, Gibson AL, Fang Z, Yates MD, Drobniewski FA (2005) Molecular analysis of Isoniazid-resistant Mycobacterium tuberculosis isolates from England and Wales reveals the phylogenetic significance of the ahpC-46A polymorphism. Antimicrob Agents Chemother 49:1455–1464CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Garcia MJ, Lathigra R, Allen B, Moreno C, van Embden JD, Young D (1992) Alterations in the superoxide dismutase gene of an isoniazid-resistant strain of Mycobacterium tuberculosis. Infect Immun 60:2160–2165Google Scholar
  14. 14.
    Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2:662–667CrossRefGoogle Scholar
  15. 15.
    Baulard AR, Betts JC, Engohang-Ndong J, Quan S, McAdam RA, Brennan PJ, Locht C, Besra GS (2000) Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem 275:28326–28331Google Scholar
  16. 16.
    DeBarber AE, Mdluli K, Bosman M, Bekker LG, Barry CE 3rd (2000) Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97:9677–9682CrossRefGoogle Scholar
  17. 17.
    Vannelli TA, Dykman A, Ortiz de Montellano PR (2002) The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J Biol Chem 277:12824–12829CrossRefGoogle Scholar
  18. 18.
    Vilcheze C, Wang F, Arai M, Hazbón MH, Colangeli R, Kremer L, Weisbrod TR, Alland D, Sacchettini JC, Jacobs WR (2006) Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med 12:1027–1029CrossRefGoogle Scholar
  19. 19.
    Nguyena M, Quemard A, Marrakchi H, Bernadou J, Meunier B (2001) The nonenzymatic activation of isoniazid by MnIII-pyrophosphate in the presence of NADH produces the inhibition of the enoyl-ACP reductase InhA from Mycobacterium tuberculosis. Comptes Rendus del'Académie des Sciences – Series IIC –. Chemistry 4:35–40Google Scholar
  20. 20.
    Jia L, Tomaszewski JE, Hanrahan C, Coward L, Noker P, Gorman G, Nikonenko B, Protopopova M (2005) Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br J Pharmacol 144:80–87CrossRefGoogle Scholar
  21. 21.
    Sullivan TJ, Truglio JJ, Boyne ME, Novichenok P, Zhang X, Stratton CF, Li HJ, Kaur T, Amin A, Johnson F, Slayden RA, Kisker C, Tonge PJ (2006) High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem Biol 1:43–53CrossRefGoogle Scholar
  22. 22.
    He X, Alian A, Ortiz de Montellano PR (2007) Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg Med Chem 15:6649–6658CrossRefGoogle Scholar
  23. 23.
    Kuo MR, Morbidoni HR, Alland D, Sneddon SF, Gourlie BB, Staveski MM, Leonard M, Gregory JS, Janjigian AD, Yee C, Musser JM, Kreiswirth B, Iwamoto H, Perozzo R, Jacobs WR , Sacchettini JC, Fidock DA (2003) Targeting tuberculosis and malaria through inhibition of Enoyl Reductase: compound activity and structural data. J Biol Chem 278:20851–20859CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Post-Martens K, Denkin S (2006) New drug candidates and therapeutic targets for tuberculosis therapy. Drug Discov Today 11:21–27CrossRefGoogle Scholar
  25. 25.
    Wang F, Langley R, Gulten G, Dover Lynn G, Besra GS, Jacobs WR, Sacchettini JC (2007) Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204:73–78CrossRefGoogle Scholar
  26. 26.
    Oliveira JS, Souza EHS, Basso LA, Palaci M, Dietze R, Santos DS, Moreira IS (2004) An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Chem Commun 3:312–313CrossRefGoogle Scholar
  27. 27.
    Oliveira JS, Souza EHS, Norberto de Souza O, Moreira IS, Santos DS, Basso LA (2006) Slow-Onset Inhibition of 2-trans-Enoyl-ACP (CoA) Reductase from Mycobacterium tuberculosis by an inorganic complex. Curr Pharm Design 12:2409–2424CrossRefGoogle Scholar
  28. 28.
    Vasconcelos I, Meyer E, Sales FAM, Moreira IS, Santos DS (2008) The mode of inhibition of Mycobacterium tuberculosis wild-type and Isoniazid-resistant 2-trans-Enoyl-ACP(CoA) Reductase enzymes by an inorganic complex. Anti-Inf Ag Med Chem 7:50–62Google Scholar
  29. 29.
    Basso LA, Schneider CZ, dos Santos AJAB, dos Santos AA, Campos MM, Souto AA, Santos DS (2010) An inorganic complex that inhibits Mycobacterium tuberculosis enoyl reductase as a prototype of a new class of chemotherapeutic agents to treat tuberculosis. J Braz Chem Soc 00:1–6Google Scholar
  30. 30.
    Dessen A, Quémard A, Blanchard JS, Jacobs WR, Sacchettini JC (1995) Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267:1638–1641CrossRefGoogle Scholar
  31. 31.
    Schroeder EK, Basso LA, Santos DS, Norberto de Souza O (2005) Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities. Biophys J 89:876–884CrossRefGoogle Scholar
  32. 32.
    Oliveira JS, Pereira JH, Canduri F, Rodrigues NC, Norberto de Souza O, de Azevedo WF, Basso LA, Santos DS (2006) Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and Isoniazid-resistant Enoyl-ACP(CoA) Reductase enzymes from Mycobacterium tuberculosis. J Mol Biol 359:646–666CrossRefGoogle Scholar
  33. 33.
    Cheatham III TE, Brooks BR (1998) Recent advances in molecular dynamics simulation towards the realistic representation of biomolecules in solution. Theor Chem Acc 99:279–288Google Scholar
  34. 34.
    Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652CrossRefGoogle Scholar
  35. 35.
    Karplus M, Kuriyan J (2005) Chemical theory and computation special feature: molecular dynamics and protein function. Proc Natl Acad Sci USA 102:6679–6685CrossRefGoogle Scholar
  36. 36.
    Nyarady Z, Czompoly T, Bosze S, Nagy G, Petrohai A, Pál J, Hudecz F, Berki T, Németh P (2006) Validation of in silico prediction by in vitro immunoserological results of fine epitope mapping on citrate synthase specific autoantibodies. Mol Immunol 43:830–838CrossRefGoogle Scholar
  37. 37.
    Quémard A, Sacchettini JC, Dessen A, Vilchèze C, Bittman R, Jacobs WR , Blanchard JS (1995) Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34:8235–8241CrossRefGoogle Scholar
  38. 38.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation Force Field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  39. 39.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  40. 40.
    Norberto de Souza O, Ornstein RL (1997) Effect of periodic box size on aqueous molecular dynamics simulation of a DNA dodecamer with particle-mesh Ewald method. Biophys J 72:2395–2397CrossRefGoogle Scholar
  41. 41.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  42. 42.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San FranciscoGoogle Scholar
  43. 43.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  44. 44.
    Norberto de Souza O, Ornstein RL (1999) Molecular dynamics simulations of a protein-protein dimmer: particle-mesh Ewald electrostatic model yields far superior results to standard cutoff model. J Biomol Struct Dyn 16:1205–1218Google Scholar
  45. 45.
    Roe DR, Okur A, Wickstrom L, Hornak V, Simmerling C (2007) Secondary structure bias in generalized born solvent models: comparison of conformational ensembles and free energy of solvent polarization from explicit and implicit salvation. J Phys Chem B 111:1846–1857CrossRefGoogle Scholar
  46. 46.
    Maiorov VN, Crippen GM (1994) Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol 235:625–634CrossRefGoogle Scholar
  47. 47.
    Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797CrossRefGoogle Scholar
  48. 48.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  49. 49.
    Kaplan W, Littlejohn TG (2001) Swiss-PDB Viewer (Deep View). Brief Bioinform 2:195–197CrossRefGoogle Scholar
  50. 50.
    DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto, CA, USAGoogle Scholar
  51. 51.
    McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793CrossRefGoogle Scholar
  52. 52.
    Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134CrossRefGoogle Scholar
  53. 53.
    Hutchinson G, Thornton (1996) JM PROMOTIF-A program to identify and analyze structural motifs in proteins. Protein Sci 5:212–220CrossRefGoogle Scholar
  54. 54.
    Hubbard SJ, Thornton JM (1993) NACCESS, Computer Program. Department of Biochemistry and Molecular Biology. University College LondonGoogle Scholar
  55. 55.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  56. 56.
    Rossmann MG, Liljas A, Branden CI, Banaszak LJ (1975) In: Boyer PD (ed) Evolutionary and structural relationships among dehydrogenases. The Enzymes, 3rd edn. Academic, New York, pp 61–102Google Scholar
  57. 57.
    Jornvall H, Persson B, Krook M, Atrian S, Gonzalez RD, Jeffery J, Ghosh D (1995) Shortchain dehydrogenases/reductases (SDR). Biochemistry 18:6003–6013CrossRefGoogle Scholar
  58. 58.
    Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jörnvall H (2003) Short-chain dehydrogenase/reductases (SDR): the 2002 update. Chem Biol Interact 143:247–253CrossRefGoogle Scholar
  59. 59.
    Chen Y, Barkley MD (1998) Toward understanding Tryptophan fluorescence in proteins. Biochemistry 37:9976–9982CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • André L. P. da Costa
    • 1
    • 2
  • Ivani Pauli
    • 1
    • 2
    • 3
  • Márcio Dorn
    • 1
    • 5
  • Evelyn K. Schroeder
    • 1
  • Chang-Guo Zhan
    • 4
  • Osmar Norberto de Souza
    • 1
    • 2
    • 3
    Email author
  1. 1.LABIO - Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas. PPGCC, Faculdade de Informática, PUCRSPorto AlegreBrasil
  2. 2.Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, PUCRSPorto AlegreBrasil
  3. 3.INCT-TB - Instituto Nacional de Ciência e Tecnologia em TuberculosePorto AlegreBrasil
  4. 4.College of PharmacyUniversity of KentuckyLexingtonUSA
  5. 5.Instituto de InformáticaUniversidade Federal do Rio Grande do Sul – UFRGSPorto AlegreBrasil

Personalised recommendations