Advertisement

Journal of Molecular Modeling

, Volume 18, Issue 4, pp 1273–1284 | Cite as

Evaluation of natural and nitramine binding energies to 3-D models of the S1S2 domains in the N-methyl-D-aspartate receptor

  • Jason Ford-Green
  • Olexandr Isayev
  • Leonid Gorb
  • Edward J. Perkins
  • Jerzy Leszczynski
Original Paper
  • 156 Downloads

Abstract

Overactivation of the N-methyl-D-aspartate receptor (NMDAR) in postsynaptic neurons leads to glutamate-related excitotoxicity in the central nervous system of mammals. We have built 3-D models of each domain for the universal screening of potential toxicants and their binding mechanisms. Our docking results show that the calculated pK i values of glycine and L-glutamate significantly increase (>1) when the NR1 and NR2A S1S2 domains are closing, respectively. Inversely, D-cycloserine (DCS) and 5,7-dichlorokynurenic acid (5,7-DCKA) do not show such a dependence on domain closure. Replica exchange molecular dynamics (REMD) confirmed 5 different conformational states of the S1S2 domain along the 308.2 K temperature trajectory. Analysis of residue fluctuations during this temperature trajectory showed that residues in loop 1, loop 2, the amino terminal domain (ATD), and the area linked to ion channel α-helices are involved in this movement. This further implicates the notion that efficacious ligands act through S1S2 lobe movement which can culminate in the opening or closing of the ion channel. We further tested this by docking hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) to the S1S2 domain. Our results predict that these nitramines are not efficacious and thus do not produce excitoxicity when they bind to the S1S2 domain of the NMDAR.

Keywords

Homology modeling Molecular dynamics Molecular docking NMDAR RDX HMX 

Notes

Acknowledgments

The authors would like to thank Jacques Reifmann and the rest of his group at The Biotechnology High Performance Computing Software Application Institute (BHSAI) for their generous allotment of time, and the Army Research Laboratory (ARL) for the use of their computational resources. This work has been done under grant number W912HZ-09-C-0026. The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Government. Results in this study were funded and obtained from research conducted under the Environmental Quality Technology Program of the United States Army Corps of Engineers by the US Army ERDC. Permission was granted by the Chief of Engineers to publish this information. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Supplementary material

894_2011_1152_MOESM1_ESM.doc (102 kb)
Fig. S1 a Ramachandran plot of the NR1 S1S2 3-D model before simulation. b Ramachandran plot of the NR2A S1S2 3-D model before simulation. c Ramachandran plot of the X-ray crystal structure 1pbq chain A [14]. (DOC 102 kb)
894_2011_1152_MOESM2_ESM.doc (76 kb)
Fig. S2 Root mean square deviation (RMSD in Å) versus time (ps) plots of a NR1 S1S2 3-D model over 4 ns and b NR2A S1S2 3-D model over 3 ns. Due to the increased flexibility observed for loops 1 and 2, the amino terminus (N), and the GT-linker regions of the NR1 S1S2 model we switched from a 2 fs time step to a 1 fs time step for the simulation of the NR2A S1S2 model. All simulations were done using the GB implicit solvent potential at 300K in the AMBER10 package. (DOC 76 kb)
894_2011_1152_MOESM3_ESM.doc (84 kb)
Fig. S3 Backbone alignment of the NR1 open structure from a classical MD simulation (blue) and the NR1 E conformer (tan) from the REMD simulation (5.20 Å RMSD) (DOC 84 kb)
894_2011_1152_MOESM4_ESM.doc (50 kb)
Table S1 Comparison of inhibition constants for the five different REMD conformations (DOC 49 kb)

References

  1. 1.
    Lipton SA, Nicotera P (1998) Cell Calcium 23:165–171CrossRefGoogle Scholar
  2. 2.
    Choi YB, Tenneti L, Le D, Ortiz J, Bai G, Chen HSV, Lipton S (2000) Nat Neurosci 3:15–21CrossRefGoogle Scholar
  3. 3.
    Meldrum B, Garthwaite J (1990) Trends Pharmacol Sci 11:379–387CrossRefGoogle Scholar
  4. 4.
    Rothman SM, Olney JW (1987) Trends Neurosci 10:299–302CrossRefGoogle Scholar
  5. 5.
    Dingledine R, Borges K, Bowie D, Traynelis SF (1999) Pharmacol Rev 51(1):7–61Google Scholar
  6. 6.
    Liu Y, Zhang J (2000) Chin Med J 113:948–956Google Scholar
  7. 7.
    Cull-Candy S, Brickley S, Farrant M (2001) Curr Opin Neurobiol 11:327–335Google Scholar
  8. 8.
    Paoletti P, Neyton J (2007) Curr Opin Pharmacol 7:39–47CrossRefGoogle Scholar
  9. 9.
    Hebb DO (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  10. 10.
    Hebb DO (1961) Brain mechanisms and learning. Oxford University Press, LondonGoogle Scholar
  11. 11.
    Schorge S, Colquhoun D (2003) J Neurosci 23:1151–1158Google Scholar
  12. 12.
    Chatterton E, Awobuluyi M, Premkumar LS (2002) Nature 415:793–798CrossRefGoogle Scholar
  13. 13.
    Furukawa H, Gouaux E (2003) EMBO J 22:2873–2885CrossRefGoogle Scholar
  14. 14.
    Inanobe A, Furukawa H, Gouaux E (2005) Neuron 47:71–84CrossRefGoogle Scholar
  15. 15.
    Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Nature 438:185–192CrossRefGoogle Scholar
  16. 16.
    Chen HSV, Lipton SA (2005) JPET 314:961–971CrossRefGoogle Scholar
  17. 17.
    Kaye SL, Sansom MSP, Biggin PC (2006) J Biol Chem 281:12736–12742CrossRefGoogle Scholar
  18. 18.
    Mamonova T, Speranskiy K, Kurnikova M (2008) Proteins 73:656–671Google Scholar
  19. 19.
    Chohan KK, Wo ZG, Oswald RE, Sutcliffe MJ (2000) J Mol Model 6:16–25CrossRefGoogle Scholar
  20. 20.
    Sutcliffe MJ, Smeeton AH, Wo ZG, Oswald RE (1998) Faraday Discuss 111:259–272CrossRefGoogle Scholar
  21. 21.
    Gong P, Basu N, Scheuhammer AM, Perkins EJ (2010) Environ Sci Pollut Res Int 17:181–186CrossRefGoogle Scholar
  22. 22.
    Neal AP, Worley PF, Guilarte TR (2011) Neurotoxicology 32:281–289CrossRefGoogle Scholar
  23. 23.
    Nayyar T, Wu J, Hood DB (2003) Cell Mol Biol (Noisy-le-grand) 49:1357–1362Google Scholar
  24. 24.
    Agency for Toxic Substances and Disease Registry (1995) Toxicological profile for RDX. Agency for Toxic Substances and Disease Registry, AtlantaGoogle Scholar
  25. 25.
    Bartha R, Hsu T (1974) Soil Science 115:444–453Google Scholar
  26. 26.
    Jenkins TF, Walsh ME (1992) Talanta 39:419–428CrossRefGoogle Scholar
  27. 27.
    Carpenter BH, Liepins R, Sickles J II, Hamilton HL, van Osdell DW (1978) SmartMedia 284:A221060Google Scholar
  28. 28.
    Barsotti M, Crofti G (1949) Med Lav 40:107–112Google Scholar
  29. 29.
    Burdette LJ, Cook LL, Dyer RS (1988) Toxicol Appl Pharmacol 92:436–444CrossRefGoogle Scholar
  30. 30.
    Crouse LC, Michie MW, Major MA et al (2006) Subchronic oral toxicity of RDX in rats. Elsevier, Amsterdam, pp 619–638Google Scholar
  31. 31.
    Schneider NR, Bradley SR, Andersen ME (1978) Toxicol Appl Pharmacol 46:1163–1171CrossRefGoogle Scholar
  32. 32.
    McCain WC, Ferguson JW (1998) Toxicol study 2340-38-95-6-1. US Army Center for Health Promotion and Preventative Medicine, Aberdeen Proving GroundGoogle Scholar
  33. 33.
    Major MA, Reddy G, Berge MA, Patzer S, Li AC, Gohdes M (2007) J Toxocol Environ Health 70:1191–1202CrossRefGoogle Scholar
  34. 34.
    Quinn MJ Jr, McFarland CA, Johnson MS (2009) Toxicol Mech Methods 19:1537–6524CrossRefGoogle Scholar
  35. 35.
    McFarland CA, Quinn MJ Jr, Bazar MA, Remick AK, Talent LG, Johnson MS (2008) Environ Toxicol Chem 27:1102–1111CrossRefGoogle Scholar
  36. 36.
    Williams LR, Aroniadou-Anderjaska V, Qashu F, Finne H, Pidoplichko V et al (2011) Environ Health Perspect 119:357–363Google Scholar
  37. 37.
    Bannon DI, Dillman JF, Hable MA, Phillips CS, Perkins E (2009) J Chem Res Toxicol 22:620–625CrossRefGoogle Scholar
  38. 38.
    Karp SJ, Masu M, Eki T, Ozawa K, Nakanishi SJ (1993) Biol Chem 268:3728–3733Google Scholar
  39. 39.
    Molina H, Horn DM, Tang N, Mathivanan S, Pandey A (2007) Proc Natl Acad Sci USA 104:2199–2204Google Scholar
  40. 40.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22:195–201CrossRefGoogle Scholar
  41. 41.
    Edgar RC (2004) Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  42. 42.
    Melo F, Feytmans E (1997) J Mol Biol 267:207–222CrossRefGoogle Scholar
  43. 43.
    Lüthy R, Bowie JU, Eisenberg D (1992) Nature 356:83–85Google Scholar
  44. 44.
    Case DA, Darden TA, Cheatham TE III et al (2008) AMBER10. University of California, San FranciscoGoogle Scholar
  45. 45.
    Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11:431–439CrossRefGoogle Scholar
  46. 46.
    Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.1. Gaussian Inc., WallingfordGoogle Scholar
  47. 47.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  48. 48.
    Lipton SA, Choi YB, Takahashi H, Zhang D, Li W, Godzik A (2002) Bankston LA 25:474–480Google Scholar
  49. 49.
    Takahashi H, Shin Y, Cho SJ, Zago WM, Nakamura T, Gu Z, Ma Y, Furukawa H, Liddington R, Zhang D, Tong G, Chen HSV, Lipton SA (2007) Neuron 53:53–64CrossRefGoogle Scholar
  50. 50.
    Chen PE, Geballe MT, Stansfeld PJ, Johnston AR, Yuan H, Jacob AL, Snyder JP, Traynelis SF, Wyllie DJA (2005) Mol Pharmacol 67:1470–1484CrossRefGoogle Scholar
  51. 51.
    Blaise MC, Sowdhamini R, Pradhan N (2005) J Mol Model 11:489–502CrossRefGoogle Scholar
  52. 52.
    Yao Y, Mayer ML (2006) J Neurosci 26:4559–4566CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jason Ford-Green
    • 1
    • 2
  • Olexandr Isayev
    • 3
  • Leonid Gorb
    • 4
  • Edward J. Perkins
    • 2
  • Jerzy Leszczynski
    • 1
    • 2
  1. 1.Interdisciplinary Center for NanotoxicityJackson State UniversityJacksonUSA
  2. 2.Environmental Laboratory, US Army ERDCVicksburgUSA
  3. 3.Department of ChemistryCase Western Reserve UniversityClevelandUSA
  4. 4.Badger Technical ServicesSan AntonioUSA

Personalised recommendations