Advertisement

Journal of Molecular Modeling

, Volume 18, Issue 3, pp 871–879 | Cite as

Influence of stereochemistry on proton transfer in protonated tripeptide models

  • Namat Ali Soliman
  • Petr Kulhánek
  • Jaroslav KočaEmail author
Original Paper
  • 85 Downloads

Abstract

Vectorial proton transfer among carbonyl oxygen atoms was studied in two models of tripeptide via quantum chemical calculations using the hybrid B3LYP functional and the 6-31++G** basis set. Two principal proton transfer pathways were found: a first path involving isomerization of the proton around the double bond of the carbonyl group, and a second based on the large conformational flexibility of the tripeptide model where all carbonyl oxygen atoms cooperate. The latter pathway has a rate-determining step energy barrier that is only around half of that for the first pathway. As conformational flexibility plays a crucial role in second pathway, the effect of attaching methyl groups to the alpha carbon atoms was studied. The results obtained are presented for all four possible stereochemical configurations.

Keywords

Conformational rearrangement Density functional theory Protonated peptides Proton transfer 

Notes

Acknowledgments

The access to the MetaCentrum supercomputing facilities provided under the research intent MSM6383917201 is appreciated. This work was supported by the Ministry of Education of the Czech Republic, under contracts MSM0021622413 and LC06030 (J.K.). The research leading to these results also received funding from the European Community's Seventh Framework Programme under grant agreement no. 205872 (P.K.).

Supplementary material

894_2011_1116_MOESM1_ESM.doc (34 kb)
ESM 1 (DOC 33 kb)

References

  1. 1.
    Pelmenschikov V, Blomberg M, Siegbahn P (2002) A theoretical study of the mechanism for peptide hydrolysis by thermolysin. J Biol Inorg Chem 7:284–298CrossRefGoogle Scholar
  2. 2.
    Rodiquez C, Cunje A, Shoeib T, Chu I, Hopkinson A, Siu K (2000) Solvent-assisted rearrangements between tautomers of protonated peptides. J Phys Chem A 104:5023–5028CrossRefGoogle Scholar
  3. 3.
    Rodriquez C, Cunje A, Shoeib T, Chu I, Hopkinson A, Siu K (2001) Proton migration and tautomerism in protonated triglycine. J Am Chem Soc 123:3006–3012CrossRefGoogle Scholar
  4. 4.
    Paizs B, Suhai S (2001) Theoretical study of the main fragmentation pathways for protonated glycylglycine. Rapid Commun Mass Spectrom 15:651–663CrossRefGoogle Scholar
  5. 5.
    Paizs B, Csonka I, Lendvay G, Suhai S (2001) Proton mobility in protonated glycylglycine and N-formylglycylglycinamide: a combined quantum chemical and RKKM study. Rapid Commun Mass Spectrom 15:637–650CrossRefGoogle Scholar
  6. 6.
    Smith R, Loo J, Barinaga C, Edmonds C, Udseth H (1990) Collisional activation and collision-activated dissociation of large multiply charged polypeptides and proteins produced by electrospray ionization. J Am Soc Mass Spectrom 1:53–65CrossRefGoogle Scholar
  7. 7.
    Campbell S, Rodgers M, Marzluff E, Beauchamp J (1995) Deuterium exchange reactions as a probe of biomolecule structure. Fundamental studies of cas phase H/D exchange reactions of protonated glycine oligomers with D2O, CD3OD, CD3CO2D, and ND3. J Am Chem Soc 117:12840–12854Google Scholar
  8. 8.
    Cassady C, Carr S, Zhang K, Chungphillips A (1995) Experimental and ab-initio studies on protonations of alanine and small peptides of alanine and glycine. J Org Chem 60:1704–1712CrossRefGoogle Scholar
  9. 9.
    Chaudhuri C, Jiang J, Wu C, Wang X, Chang H (2001) Characterization of protonated formamide-containing clusters by infrared spectroscopy and ab initio calculations. II. Hydration of formamide in the gas phase. J Phys Chem A 105:8906–8915Google Scholar
  10. 10.
    Csonka I, Paizs B, Lendvay G, Suhai S (2000) Proton mobility in protonated peptides: a joint molecular orbital and RRKM study. Rapid Commun Mass Spectrom 14:417–431CrossRefGoogle Scholar
  11. 11.
    Martin R (2001) In: Sigel A (ed) Probing of proteins by metal Ions and their low-molecular-weight complexes (Metal Ions in Biological Systems, vol 38). CRC Press, Boca Raton, pp 1–23Google Scholar
  12. 12.
    MacDonald B, Thachuk M (2008) Gas-phase proton-transfer pathways in protonated histidylglycine. Rapid Commun Mass Spectrom 22:2946–2954CrossRefGoogle Scholar
  13. 13.
    Fu H, Fu A (2007) Theoretical study on the reaction mechanism of proton transfer in alaninamide. J Mol Struct THEOCHEM 818:163–170CrossRefGoogle Scholar
  14. 14.
    Richard J, Amyes T (2001) Proton transfer at carbon. Curr Opin Chem Biol 5:626–633CrossRefGoogle Scholar
  15. 15.
    Hur O, Niks D, Casino P, Dunn M (2002) Proton transfers in the beta-reaction catalyzed by tryptophan synthase. Biochemistry 41:9991–10001CrossRefGoogle Scholar
  16. 16.
    Tomashek J, Brusilow W (2000) Stoichiometry of energy coupling by proton-translocating ATPases: a history of variability. J Bioenerg Biomembr 32:493–500CrossRefGoogle Scholar
  17. 17.
    Senior A (1990) The proton-translocating atpase of Escherichia coli. Annu Rev Biophys Bioeng 19:7–41Google Scholar
  18. 18.
    Green MK, Lebrilla CB (1997) Ion-molecule reactions as probes of gas-phase structures of peptides and proteins. Mass Spectrom Rev 16:53–71CrossRefGoogle Scholar
  19. 19.
    Papayannopoulos I (1995) The interpretation of collision-induced dissociation tandem mass-spectra of peptides. Mass Spectrom Rev 14:49–73CrossRefGoogle Scholar
  20. 20.
    Barber M, Bordoli R, Sedgwick R, Tyler A (1981) Fast atom bombardment of solids (fab): a new ion-source for mass-spectrometry. J Chem Soc Chem Commun 325–327Google Scholar
  21. 21.
    Hillenkamp F, Karas M, Beavis R, Chait B (1991) Matrix-assisted laser desorption ionization mass-spectrometry of biopolymers. Anal Chem 63:A1193–A1202CrossRefGoogle Scholar
  22. 22.
    Fenn J, Mann M, Meng C, Wong S, Whitehouse C (1990) Electrospray ionization: principles and practice. Mass Spectrom Rev 9:37–70Google Scholar
  23. 23.
    Kulhanek P, Schlag E, Koca J (2003) A novel mechanism of proton transfer in protonated peptides. J Am Chem Soc 125:13678–13679CrossRefGoogle Scholar
  24. 24.
    Kulhanek P, Schlag E, Koca J (2003) Mechanism of proton transfer in short protonated oligopeptides 1N-methylacetamide and N-2-acetyl-N-1-methylglycinamide. J Phys Chem A 107:5789–5797CrossRefGoogle Scholar
  25. 25.
    Becke A (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652Google Scholar
  26. 26.
    Lee C, Yang W, Parr R (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789Google Scholar
  27. 27.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206CrossRefGoogle Scholar
  28. 28.
    Hehre W, Ditchfie R, Pople J (1972) Self-consistent molecular-orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic molecules. J Chem Phys 56:2257–2261Google Scholar
  29. 29.
    Harihara P, Pople J (1973) Influence of polarization functions on molecular-orbital hydrogenation energies. Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  30. 30.
    Clark T, Chandrasekhar J, Spitznagel G, PvR S (1983) Efficient diffuse function-augmented basis-sets for anion calculations. 3. The 3-21 + G basis set for 1st-row elements, Li-F. J Comput Chem 4:294–301Google Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A.9. Gaussian Inc., PittsburghGoogle Scholar
  32. 32.
    Ayala P, Schlegel H (1998) Identification and treatment of internal rotation in normal mode vibrational analysis. J Chem Phys 108:2314–2325CrossRefGoogle Scholar
  33. 33.
    Desiraju G, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Namat Ali Soliman
    • 1
  • Petr Kulhánek
    • 1
    • 2
  • Jaroslav Koča
    • 1
    • 2
    Email author
  1. 1.Faculty of Science - National Centre for Biomolecular ResearchMasaryk UniversityBrnoCzech Republic
  2. 2.Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic

Personalised recommendations