Journal of Molecular Modeling

, Volume 18, Issue 1, pp 359–365

Quantum chemical investigation of the thermal pyrolysis reactions of the carboxylic group in a brown coal model

Original Paper

Abstract

Different reaction pathways of the carboxylic group in a brown coal model were investigated by applying density function quantum chemical theory, examining the possible cross-linking and decomposition reactions between the hydrogen bonded carboxylic group–carboxylic group and the carboxylic group–hydroxyl group during the thermal pyrolysis process. The results show that bimolecular dehydration and decarboxylation of hydrogen bonded carboxylic groups have distinctly lower activation barriers and therefore, proceed preferentially at low temperature. The esterification reaction between the hydrogen bonded carboxylic group and hydroxyl group, together with unimolecular decarboxylation of isolated single carboxylic groups were also possible at moderate temperature. Aryl–aryl coupling is thought to occur via radical pyrolysis and recombination at relatively high temperature.

Keywords

Decarboxylation Thermal pyrolysis Cross-linking Brown coal Quantum chemistry 

References

  1. 1.
    Domazetis G, Raoarun M, James BD (2006) Energy Fuels 20:1997–2007CrossRefGoogle Scholar
  2. 2.
    Ozvatan S, Yurum Y (2002) Energy Sources 24:581–589Google Scholar
  3. 3.
    Li C-Z (2007) Fuel 86:1664–1683CrossRefGoogle Scholar
  4. 4.
    Eskay TP, Britt PF, Buchanan AC (1996) Energy Fuels 10:1257–1261CrossRefGoogle Scholar
  5. 5.
    Ibarra J, Moliner R, Gavilan MP (1991) Fuel 70:408–413CrossRefGoogle Scholar
  6. 6.
    Joseph JT, Forrai TR (1992) Fuel 71:75–80CrossRefGoogle Scholar
  7. 7.
    Manion JA, McMillen DF, Malhotra R (1996) Energy Fuels 10:776–788CrossRefGoogle Scholar
  8. 8.
    Eskay TP, Britt PF, Buchanan AC (1997) Energy Fuels 11:1278–1287CrossRefGoogle Scholar
  9. 9.
    Mae K, Maki T, Okutsu H, Miura K (2000) Fuel 79:417–425CrossRefGoogle Scholar
  10. 10.
    Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I,Martin RL, Fox DJ, Keith T, Al-LahamMA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision A.1. Gaussian Inc, Pittsburgh PAGoogle Scholar
  11. 11.
    Ding L, Fang WH (2010) J Org Chem 75:1630–1636CrossRefGoogle Scholar
  12. 12.
    Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56CrossRefGoogle Scholar
  13. 13.
    Peng C, Schlegel HB (1993) Isr J Chem 33:449–454Google Scholar
  14. 14.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  15. 15.
    Li J, Brill TB (2003) J Phys Chem A 107:2667–2673CrossRefGoogle Scholar
  16. 16.
    Davidson D, Newman P (1952) J Am Chem Soc 74:1515–1516CrossRefGoogle Scholar
  17. 17.
    Mae K, Maki T, Miura K (2002) J Chem Eng Jpn 35:778–785CrossRefGoogle Scholar
  18. 18.
    Britt PF, Mungall WS, Buchanan AC (1998) Energy Fuels 12:660–661CrossRefGoogle Scholar
  19. 19.
    Ross DS, Loo BH, Tse DS, Hirschon AS (1991) Fuel 70:289–295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.College of Mining EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.Key Laboratory of Interface Science and Engineering in Advanced MaterialsTaiyuan University of Technology, Ministry of EducationTaiyuanPeople’s Republic of China
  3. 3.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations