Journal of Molecular Modeling

, Volume 18, Issue 1, pp 239–250 | Cite as

Theoretical study of the surface properties of poly(dimethylsiloxane) and poly(tetrafluoroethylene)

  • Andrea Michalkova
  • Sonia Tulyani
  • James Beals
  • Jerzy Leszczynski
Original Paper


Molecular dynamics (MD) simulations of poly(dimethylsiloxane) (PDMS) and poly(tetrafluoroethylene) (PTFE) were carried out to determine their surface properties and energies. This study helps to gain better insight into the molecular modeling of PDMS and PTFE, in particular how different approaches affect calculations of surface energy. Current experimental and theoretical data were used to further understand the surface properties of PDMS and PTFE as well as to validate and verify results obtained from the combination of density functional theory (DFT) calculations (including periodic boundary conditions) and MD simulations. Detailed analysis of the structure and electronic properties (by calculation of the projected density of states) of the bulk and surface models of PDMS and PTFE was performed. The sensitivity of the surface energy calculation of these two polymers to the chemistry and model preparation was indicated. The balance between the molecular density, weight (which also reflects bond orientation in the surface region), bond flexibility, and intramolecular interactions including bond stretching was revealed to govern the results obtained. In modeling, the structural organization of polymer near a given surface (types and number of end groups and broken bonds due to application of different cut offs of the periodic structure) also significantly affects the final results. Besides the structural differences, certain simulation parameters, such the DFT functionals and simulation boxes utilized, play an important role in determining surface energy. The models used here were shown to be sufficient due to their good agreement with experimental and other theoretical data related to surface properties and surface energies.


Poly(tetrafluoroethylene)  Poly(dimethylsiloxane) Vienna ab initio simulation package Surface energy 


  1. 1.
    Burness JH, Dillard JG (1994) Langmuir 10:1894–1897CrossRefGoogle Scholar
  2. 2.
    Kim G, Ajersch F (1994) J Mater Sci 29:676–681CrossRefGoogle Scholar
  3. 3.
    Voronkov GM, Milileshevich VP, Yuzhelevich YA (1978) The siloxane bond. Consultants Bureau, New YorkGoogle Scholar
  4. 4.
    Frischknecht AL, Curro JG (2003) Macromolecules 36:2122–2129CrossRefGoogle Scholar
  5. 5.
    Mark JE (1990) Silicon-containing polymers. In: Zeigler JM, Fearon FWG (eds) Silicon-based polymer science; advances in chemistry series. American Chemical Society, Washington, DC, p 47Google Scholar
  6. 6.
    Zeigher JM, Fearon FWG (1990) Silicon based polymer science: a comprehensive resource, vol 224. ACS, Washington, DCGoogle Scholar
  7. 7.
    Kraus G (1965) Rubber Chem Technol 38:1070–1114CrossRefGoogle Scholar
  8. 8.
    Vondracek AP (1990) Rubber Chem Technol 63:220–231Google Scholar
  9. 9.
    Dee GT, Sauer BB (1994) Macromolecules 27:6106–6111CrossRefGoogle Scholar
  10. 10.
    Sauer BB, Dee GT (1994) Macromolecules 27:6112–6116CrossRefGoogle Scholar
  11. 11.
    Sakka T, Ogata YH (2005) J Fluorine Chem 126:371–375CrossRefGoogle Scholar
  12. 12.
    Hariharan A, Harris JG (1994) J Chem Phys 101:4156–4165CrossRefGoogle Scholar
  13. 13.
    Thomas R (1999) In: Hougham G, Johns K, Cassidy PE, Davidson T (eds) Fluoropolymers 2: properties. Plenum, New YorkGoogle Scholar
  14. 14.
    Mansfield KF, Theodorou DN (1991) Macromolecules 24:6283–6294CrossRefGoogle Scholar
  15. 15.
    Chang J, Han J, Yang L, Jaffe RL, Yoon DY (2001) J Chem Phys 115:2831–2840CrossRefGoogle Scholar
  16. 16.
    Harris JG (1992) J Phys Chem 96:5077–5086CrossRefGoogle Scholar
  17. 17.
    Hapke T, Pätzold G, Heermann DW (1998) J Chem Phys 109:10075–10081CrossRefGoogle Scholar
  18. 18.
    Jang SS, Blanco M, Goddard WA III, Caldwell G, Ross RB (2003) Macromolecules 36:5331–5341CrossRefGoogle Scholar
  19. 19.
    Watkins EK, Jorgensen WL (2001) J Phys Chem A 105:4118–4125CrossRefGoogle Scholar
  20. 20.
    Collazo N, Shin S, Rice SA (1992) J Chem Phys 96:4735–4742CrossRefGoogle Scholar
  21. 21.
    Cui ST, Siepmann JI, Cochran HD, Cummings PT (1998) Fluid Phase Equilib 146:51–61CrossRefGoogle Scholar
  22. 22.
    Borodin O, Smith GD, Bedrov D (2002) J Phys Chem B 106:9912–9922CrossRefGoogle Scholar
  23. 23.
    Holt DB, Farmer BL, Macturk KS, Eby RK (1996) Polymer 37:1847–1855CrossRefGoogle Scholar
  24. 24.
    Lee S, Chang J, Jaffe RL, Yoon DY (2007) Macromolecules 40:7407–7412CrossRefGoogle Scholar
  25. 25.
    Sun H (1995) Macromolecules 28:701–712CrossRefGoogle Scholar
  26. 26.
    Smith JS, Borodin O, Smith GD (2004) J Phys Chem B 108:20340–20350CrossRefGoogle Scholar
  27. 27.
    Striolo A, McCabe C, Cummings PT (2005) J Phys Chem B 109:14300–14307CrossRefGoogle Scholar
  28. 28.
    Fritz L, Hofmann D (1997) Polymer 38:1035–1045CrossRefGoogle Scholar
  29. 29.
    Ismail AE, Grest GS, Heine DR, Stevens MJ (2009) Macromolecules 42:3186–3194CrossRefGoogle Scholar
  30. 30.
    Nath SK, Frischknecht AL, Curro JG, McCoy JD (2005) Macromolecules 38:8562–8573CrossRefGoogle Scholar
  31. 31.
    Byutner OG, Smith GD (2000) Macromolecules 33:4264–4270CrossRefGoogle Scholar
  32. 32.
    Macturk KS, Farmer BL, Eby RK (1995) Polym Int 37:157–164CrossRefGoogle Scholar
  33. 33.
    Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) J Microelectromechanical Systems 14:590–597CrossRefGoogle Scholar
  34. 34.
    Kroner E, Maboudian R, Arzt E (2010) Adv Eng Mater 12:398–404CrossRefGoogle Scholar
  35. 35.
    Hooper JB, Bedrov D, Smith GD, Hanson B, Borodin O, Dattelbaum DM, Kober EM (2009) J Chem Phys 130:144904–144911CrossRefGoogle Scholar
  36. 36.
    Choo BK, Song NY, Kim KH, Choi JS, Park KC, Jang J (2008) J Non-Cryst Solids 354:2879–2884CrossRefGoogle Scholar
  37. 37.
    Voue M, Semal S, De Coninck J (1999) Langmuir 15:7855–7862CrossRefGoogle Scholar
  38. 38.
    Surface energy data for polydimethylsiloxane (PDMS)
  39. 39.
    Okada O, Oka K, Kuwajima S, Toyoda S, Tanabe K (2000) Comput Theor Polymer Sci 10:371–381CrossRefGoogle Scholar
  40. 40.
    Henry DJ, Yiapanis G, Evans E, Yarovsky I (2005) J Phys Chem B 109:17224–17231CrossRefGoogle Scholar
  41. 41.
    Surface energy data for polytetrafluoroethylene (PTFE)
  42. 42.
    Grundke K, Augsburg A (2000) J Adhes Sci Technol 14:765–775CrossRefGoogle Scholar
  43. 43.
    Szymczyk K, Janczuk B (2007) Langmuir 23:8740–8746CrossRefGoogle Scholar
  44. 44.
    Clint JH, Wicks AC (2001) Int J Adhes Adhes 21:267–273CrossRefGoogle Scholar
  45. 45.
    Smith JS, Borodin O, Smith GD, Kober EM (2007) J Polym Sci B Polym Phys 45:1599–1615CrossRefGoogle Scholar
  46. 46.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  47. 47.
    Kresse G, Hafner J (1993) Phys Rev B 48:13115–13118CrossRefGoogle Scholar
  48. 48.
    Kresse G, Furthmülleer J (1996) J Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  49. 49.
    Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689–746CrossRefGoogle Scholar
  50. 50.
    Blöchl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  51. 51.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  52. 52.
    Perdew JP, Zunger A (1981) Phys Rev B 23:548–552CrossRefGoogle Scholar
  53. 53.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  54. 54.
    Kroll P, Hoffmann R (1999) J Am Chem Soc 121:4696–4703CrossRefGoogle Scholar
  55. 55.
    Ambrosch-Draxl C, Majewski JA, Vogl P, Leising G, Abt R, Aichholzer KD (1995) Synth Metals 69:411–414CrossRefGoogle Scholar
  56. 56.
    Preat J, Rodríguez-Ropero F, Torras J, Bertran O, Zanuyl D, Alemán C (2010) J Comput Chem 31:1741–1751Google Scholar
  57. 57.
    Brocks G, Kelly PJ, Car R (1993) Synth Metals 55–57:4243–4248CrossRefGoogle Scholar
  58. 58.
    Ando S, Ueda M (2002) Synth Metals 129:207–213CrossRefGoogle Scholar
  59. 59.
    Aouchiche HA, Djennane S, Boucekkine A (2004) Synth Metals 140:127–133CrossRefGoogle Scholar
  60. 60.
    Jørgensen M, Sommer-Larsen P, Norrman K, Krebs FC (2004) Synth Metals 142:121–125CrossRefGoogle Scholar
  61. 61.
    Izumi S, Hara S, Kumagai T, Sakai S (2004) Thin Solid Films 467:253–260CrossRefGoogle Scholar
  62. 62.
    Nose S (1984) J Chem Phys 81:511–519CrossRefGoogle Scholar
  63. 63.
    Ferrario M, Ryckaert JP (1985) Mol Phys 54:587–603CrossRefGoogle Scholar
  64. 64.
    Monkhorst HJ, Pack JD (1976) Phys Rev 13:5188–5192CrossRefGoogle Scholar
  65. 65.
    Scienomics Sarl (2004–2009) Amorphous builder software.
  66. 66.
    Weijermars R (1986) Tectonophysics 124:325–258CrossRefGoogle Scholar
  67. 67.
    Silicones and silicon-containing polymers, ABCR-Catalog 1994/1995.
  68. 68.
    Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P (2002) Science 296:519–522CrossRefGoogle Scholar
  69. 69.
    Merkel TC, He Z, Pinnau I, Freeman BD, Meakin P, Hill (2003) Macromolecules 36:6844–6855CrossRefGoogle Scholar
  70. 70.
    Swart JCW, van Helden P, van Steen E (2007) J Phys Chem C 111:4998–5005CrossRefGoogle Scholar
  71. 71.
    Hara S, Kumagai T, Izumi S, Sakai S (2004) Structural and mechanical properties of amorphous silicon: Ab initio and classical molecular dynamics study. In: Proceedings of Second Multi-scale Materials Modeling (MMM-II) Conference, 11–15 October 2004,
  72. 72.
    Jothimuthu P, Carroll A, Asgar A, Bhagat S, Lin G, Mark JE, Papautsky I (2009) J Micromech Microeng 19:045024–045032CrossRefGoogle Scholar
  73. 73.
    Xua J, Huanga XH, Zhoua NL, Zhanga JS, Baoa JCh, Lu TH, Li C (2004) Mater Lett 58:1938–1942CrossRefGoogle Scholar
  74. 74.
    Shimomura M, Okumoto H, Kaito A, Ueno K (1998) Macromolecules 31(21):7483–7487CrossRefGoogle Scholar
  75. 75.
    Nason TC, Moore JA, Lu TM (1992) Appl Phys Lett 60:1866–1868CrossRefGoogle Scholar
  76. 76.
    Zamkov MA, Conner RW, Dlott DD (2007) J Phys Chem C 111:10278–10284CrossRefGoogle Scholar
  77. 77.
    Schrader B (1989) Raman/infrared atlas of organic compounds, 2nd edn. VCH, WeinheimGoogle Scholar
  78. 78.
    de Wilde W, de Mey G (1973) Vacuum 24:307–311CrossRefGoogle Scholar
  79. 79.
    FTIR spectra of polymers.
  80. 80.
    Shi WX, Guo HX (2010) J Phys Chem B 114:6365–6376CrossRefGoogle Scholar
  81. 81.
    Li Ch, Choi P (2006) J Phys Chem B 110:6864–6870CrossRefGoogle Scholar
  82. 82.
    Mattsson AE, Jennison DR (2002) Surf Sci 520:L611–L618CrossRefGoogle Scholar
  83. 83.
    Mattson AE, Kohn W (2001) J Chem Phys 115:3441–3443CrossRefGoogle Scholar
  84. 84.
    Mattson TR, Mattson AE (2002) Phys Rev B 66:214110–214117CrossRefGoogle Scholar
  85. 85.
    Diebold U, Vogel Koplitz L, Dulub O (2004) Appl Surf Sci 237:336–342Google Scholar
  86. 86.
    Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner TS, Thornton G, Harrison NM (2001) Phys Rev Lett 86:3811–3814CrossRefGoogle Scholar
  87. 87.
    Wander A, Harrison NM (2000) Surf Sci 457:L342–L346CrossRefGoogle Scholar
  88. 88.
    Wander A, Harrison NM (2000) Surf Sci 468:L851–L855CrossRefGoogle Scholar
  89. 89.
    Meyer B, Marx D (2003) Phys Rev B 67(035403):1–11Google Scholar
  90. 90.
    Lacevic NM, Maxwell RS, Saab A, Gee RH (2006) J Phys Chem B 110:3588–3594CrossRefGoogle Scholar
  91. 91.
    Castellano M, Conzatti L, Costa G, Falqui L, Turturro A, Valenti B, Negroni F (2005) Polymer 46:695–703CrossRefGoogle Scholar
  92. 92.
    Sauer BB, Dee GT (1991) Macromolecules 24:2124–2126CrossRefGoogle Scholar
  93. 93.
    Dee GT, Sauer BB (1993) Macromolecules 26:2771–2778CrossRefGoogle Scholar
  94. 94.
    Douillard JM, Henry M (2003) J Colloid Interface Sci 263:554–561CrossRefGoogle Scholar
  95. 95.
    Spencer MJS, Hung A, Snook IK, Yarovsky I (2002) Surf Sci 513:389–398CrossRefGoogle Scholar
  96. 96.
    Avramov PV, Fedorov DG, Irle S, Kuzubov AA, Morokuma K (2009) J Phys Chem C 113:15964–15968CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andrea Michalkova
    • 1
  • Sonia Tulyani
    • 2
  • James Beals
    • 2
  • Jerzy Leszczynski
    • 1
  1. 1.Interdisciplinary Nanotoxicity Center (INC), Department of Chemistry and BiochemistryJackson State UniversityJacksonUSA
  2. 2.United Technologies Research Center (UTRC)East HartfordUSA

Personalised recommendations