Advertisement

Journal of Molecular Modeling

, Volume 18, Issue 1, pp 367–376 | Cite as

Study of the betulin molecule in a water environment; ab initio and molecular simulation calculations

  • Miroslav Pospíšil
  • Petr Kovář
  • Robert Vácha
  • Michal Svoboda
Original Paper

Abstract

Ab initio and molecular simulation methods were used in calculations of the neutral individual betulin molecule, and molecular simulations were used to optimize the betulin molecule immersed in various amounts of water. Individual betulin was optimized in different force fields to find the one exhibiting best agreement with ab initio calculations obtained in the Gaussian03 program. Dihedral torsions of active groups of betulin were determined for both procedures, and related calculated structures were compared successfully. The selected force field was used for subsequent optimization of betulin in a water environment, and a conformational search was performed using quench molecular dynamics. The total energies of betulin and its interactions in water bulk were calculated, and the influence of water on betulin structure was investigated.

Keyword

Betulin Molecular simulation Ab initio calculation Hydrogen bond 

Notes

Acknowledgments

The work was performed thanks to the financial support of the Ministry of Industry and Trade of the Czech Republic project number: FT-TA/027 and maintenance technical support from the Ministry of Education, Youth and Sports of the Czech Republic (Project MSM 0021620835).

References

  1. 1.
    Pettit GR (1996) J Nat Prod 59:812–821CrossRefGoogle Scholar
  2. 2.
    Castola V, Bighelli A, Rezzi S, Melloni G, Gladiali S, Desjobert JM, Casanova J (2002) Ind Crops Prod 15:15–22CrossRefGoogle Scholar
  3. 3.
    Mutai C, Abatis D, Vagias C, Moreau D, Roussakis C, Roussis V (2004) Phytochemistry 65:1159–1164CrossRefGoogle Scholar
  4. 4.
    Hwang BY, Chai HB, Kardono LBS, Riswan S, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD (2003) Phytochemistry 62:197–201CrossRefGoogle Scholar
  5. 5.
    Misra TN, Singh RS, Pandey HS, Singh BK, Pandey RP (2001) Fitoterapia 72:194–196CrossRefGoogle Scholar
  6. 6.
    Cota BB, de Oliveira AB, de Souza-Filho JD, Braga FC (2003) Fitoterapia 74:729–731CrossRefGoogle Scholar
  7. 7.
    Guidoin MF, Yang J, Pichette A, Roy C (2003) Thermochim Acta 398:153–166CrossRefGoogle Scholar
  8. 8.
    Tolstikova TG, Sorokina IV, Tolstikov GA, Tolstikov AG, Flekhter OB (2006) Russian J Bioorg Chem 32:37–49CrossRefGoogle Scholar
  9. 9.
    Rzeski W, Stepulak A, Szymański M, Juszczak M, Grabarska A, Sifringer M, Kaczor J, Kandefer-Szerszeń M (2009) Basic Clin Pharmacol Toxicol 105:425–432CrossRefGoogle Scholar
  10. 10.
    Kommera H, Kaluderović GN, Kalbitz J, Pachke R (2011) Invest New Drugs 29:266–272. doi: 10.1007/s10637-009-9358-x Google Scholar
  11. 11.
    Sami A, Taru M, Salme K, Jari YK (2006) Eur J Pharm Science 29:1–13CrossRefGoogle Scholar
  12. 12.
    Kashiwada Y, Chiyo J, Ikeshiro Y, Nagao T, Okabe H, Cosentino LM, Fowke K, Lee KH (2001) Bioorg Med Chem Lett 11:183–185CrossRefGoogle Scholar
  13. 13.
    Kashiwada Y, Sekiya M, Ikeshiro Y, Fujioka T, Kilgore NR, Wild CT, Allaway GP, Lee KH (2004) Bioorg Med Chem Lett 14:5851–5853CrossRefGoogle Scholar
  14. 14.
    Pavlova NI, Savinova OV, Nikolaeva SN, Boreko EI, Flekhter OB (2003) Fitoterapia 74:489–492CrossRefGoogle Scholar
  15. 15.
    Baltina LA, Flekhter OB, Nigmatullina LR, Boreko EI, Pavlova NI, Nikolaeva SN, Savinova OV, Tolstikov GA (2003) Bioorg Med Chem Lett 13:3549–3552CrossRefGoogle Scholar
  16. 16.
    Karachurina LT, Sapozhnikova TA, Zarudii FS, Flekhter OB, Galin FZ (2002) Pharm Chem J 36:432–433CrossRefGoogle Scholar
  17. 17.
    Šarek J, Klinot J, Džubák P, Klinotová E, Nosková V, Křeček V, Kořínková G, Thomson JO, Janošťáková A, Wang S, Parsons S, Fischer PM, Zhelev NZ, Hajdúch M (2003) J Med Chem 46:5402–5415CrossRefGoogle Scholar
  18. 18.
    Kvasnica M, Šarek J, Klinotová E, Džubák P, Hajdúch M (2005) Bioorg Med Chem 13:3447–3454CrossRefGoogle Scholar
  19. 19.
    Mar AA, Koohang A, Majewski ND, Szotek EL, Eizhamer DA, Flavin MT, Xu ZQ (2009) Chin Chem Lett 20:1141–1144CrossRefGoogle Scholar
  20. 20.
    Kommera H, Kaluderović GN, Kalbitz J, Pachke R (2010) Arch Pharm Chem Life Sci 8:449–457CrossRefGoogle Scholar
  21. 21.
    Salin O, Alakurtti S, Pohjala L, Siiskonen A, Maass V, Maass M, Yli-Kauhaluoma J, Vuorela P (2010) Biochem Pharmacol 80:1141–1151CrossRefGoogle Scholar
  22. 22.
    Uzenkova NV, Petrenko NI, Shakirov MM, Shul’ts EE, Tolstikov GA (2005) Chem Nat Compd 41:692–700CrossRefGoogle Scholar
  23. 23.
    Tolmacheva IA, Shelepen’kina LN, Vikharev YB, Anikina LV, Grishko VV, Tolstikov AG (2005) Chem Nat Compd 41:701–705CrossRefGoogle Scholar
  24. 24.
    Flekhter OB, Giniyatullina GV, Galin FZ, Baschenko NZ, Makara NS, Zarudii FS, Boreko EI, Savinova OV, Pavlova NI, Starikova ZA, Tolstikov GA (2005) Chem Nat Compd 41:706–709CrossRefGoogle Scholar
  25. 25.
    Flekhter OB, Medvedeva NI, Karachurina LT, Baltina LA, Galin FZ, Zarudii FS, Tolstikov GA (2005) Pharm Chem J 39:401–404CrossRefGoogle Scholar
  26. 26.
    Flekther OB, Karachurina LT, Nigmatullina LR, Sapozhnikova TA, Baltina LA, Zarudii FS, Galin FZ, Spirikhin LV, Tolstikov GA, Plyasunova OA, Pokrovskii AG (2002) Russ J Bioorg Chem 28:494–500CrossRefGoogle Scholar
  27. 27.
    Symon AV, Veselova NN, Kaplun AP, Vlasenkova NK, Fedorova GA, Lyutik AI, Gerasimova GK, Shvets VI (2005) Russ J Bioorg Chem 31:286–291CrossRefGoogle Scholar
  28. 28.
    Flekhter OB, Medvedeva NI, Karachurina LT, Baltina LA, Zarudii FS, Galin FZ, Tolstikov GA (2002) Pharm Chem J 36:488–491CrossRefGoogle Scholar
  29. 29.
    Korovin AV, Tkachev AV (2001) Russ Chem Bull Int Ed 50:304–310CrossRefGoogle Scholar
  30. 30.
    Sun IC, Shen JK, Wang HK, Cosentino LM, Lee KH (1998) Bioorg Med Chem Lett 8:1267–1272CrossRefGoogle Scholar
  31. 31.
    Sun IC, Wang HK, Kashiwada Y, Shen JK, Cosentino LM, Chen CH, Yang LM, Lee KH (1998) J Med Chem 41:4648–4657CrossRefGoogle Scholar
  32. 32.
    Fălămaş A, Pînzaru SC, Dehelean CA, Peev CI, Soica C (2011) J Raman Spectrosc 42:97–107CrossRefGoogle Scholar
  33. 33.
    Achem-Achremowicz J, Kępczyńska E, Zylewski M, Janeczko Z (2009) Biomed Chromatogr 24:261–267Google Scholar
  34. 34.
    Trishin YG, Chernyavskii GG, Shafeeva MV, Nelyubina YV (2010) Russ J Org Chem 46:1490–1492CrossRefGoogle Scholar
  35. 35.
    Drebushchak TN, Mikhailenko MA, Brezgunova ME, Shakhtshneider TP, Kuznetsova SA (2010) J Struct Chem 51:798–801CrossRefGoogle Scholar
  36. 36.
    Hiroya K, Takahashi T, Miura N, Naganuma A, Sakamoto T (2002) Bioorg Med Chem 10:3229–3236CrossRefGoogle Scholar
  37. 37.
    Pogrebnyak AV, Vasilenko YuK, Oganesyan ÉT, Glushko AA, Suzdalev KF, Pogrebnyak LV (2002) Pharm Chem J 36:535–537CrossRefGoogle Scholar
  38. 38.
    Bernard P, Scior T, Didier B, Hibert M, Berthon JY (2001) Phytochemistry 58:865–874CrossRefGoogle Scholar
  39. 39.
    Şoica CM, Peev CI, Ciurlea S, Ambrus R, Dehelean C (2010) Farmacia 58:611–619Google Scholar
  40. 40.
    Falamaş A, Pînzaru SC, Chiş V, Dehelean C (2010) J Mol Struct. doi: 10.1016/j.molstruc.2010.11.044
  41. 41.
    Frisch MJ et al (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford CTGoogle Scholar
  42. 42.
    Lindahl E, Hess B, van der Spoel D (2001) J Mol Model 7:306–317Google Scholar
  43. 43.
    Accelrys Software Inc, Cerius Modeling Environment, Release 4.5/Material Studio Modeling Environment, Release 4.5 (2003) Accelrys Software Inc, San DiegoGoogle Scholar
  44. 44.
    Sun H (1998) J Phys Chem B 102:7338–7364CrossRefGoogle Scholar
  45. 45.
    Maple JR, Hwang MJ, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) J Comput Chem 15:162–182CrossRefGoogle Scholar
  46. 46.
    Hwang MJ, Stockfisch TP, Hagler AT (1994) J Am Chem Soc 116:2515–2525CrossRefGoogle Scholar
  47. 47.
    Rappé AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) J Am Chem Soc 114:10024–10035CrossRefGoogle Scholar
  48. 48.
    Casewit CJ, Colwell KS, Rappé AK (1992) J Am Chem Soc 114:10035–10046CrossRefGoogle Scholar
  49. 49.
    Rappé AK, Colwell KS, Casewit CJ (1993) Inorg Chem 32:3438–3450CrossRefGoogle Scholar
  50. 50.
    Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT (1988) Proteins Struct Funct Genet 4:31–47CrossRefGoogle Scholar
  51. 51.
    Mayo SL, Olafson BD, Goddard WA III (1990) J Phys Chem 94:8897–8909CrossRefGoogle Scholar
  52. 52.
    Rappe AK, Goddard WA III (1991) J Phys Chem 95:3358–3363CrossRefGoogle Scholar
  53. 53.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  54. 54.
    Comba P, Hambley TW (1995) Molecular modelling of inorganic compounds. VCH, WeinheimGoogle Scholar
  55. 55.
    Lennard-Jones JE (1925) Proc R Soc London Ser A 109:584CrossRefGoogle Scholar
  56. 56.
    Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280CrossRefGoogle Scholar
  57. 57.
    Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) J Am Chem Soc 115:9620–9631CrossRefGoogle Scholar
  58. 58.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Miroslav Pospíšil
    • 1
    • 2
  • Petr Kovář
    • 1
  • Robert Vácha
    • 2
  • Michal Svoboda
    • 2
  1. 1.Faculty of Mathematics and PhysicsCharles University in PraguePrague 2Czech Republic
  2. 2.I.Q.A.Prague 5Czech Republic

Personalised recommendations