Journal of Molecular Modeling

, Volume 17, Issue 12, pp 3309–3318

Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine

  • Kevin E. Riley
  • Jane S. Murray
  • Jindřich Fanfrlík
  • Jan Řezáč
  • Ricardo J. Solá
  • Monica C. Concha
  • Felix M. Ramos
  • Peter Politzer
Original Paper

Abstract

In the past several years, halogen bonds have been shown to be relevant in crystal engineering and biomedical applications. One of the reasons for the utility of these types of noncovalent interactions in the development of, for example, pharmaceutical ligands is that their strengths and geometric properties are very tunable. That is, substitution of atoms or chemical groups in the vicinity of a halogen can have a very strong effect on the strength of the halogen bond. In this study we investigate halogen-bonding interactions involving aromatically-bound halogens (Cl, Br, and I) and a carbonyl oxygen. The properties of these halogen bonds are modulated by substitution of aromatic hydrogens with fluorines, which are very electronegative. It is found that these types of substitutions have dramatic effects on the strengths of the halogen bonds, leading to interactions that can be up to 100% stronger. Very good correlations are obtained between the interaction energies and the magnitudes of the positive electrostatic potentials (σ-holes) on the halogens. Interestingly, it is seen that the substitution of fluorines in systems containing smaller halogens results in electrostatic potentials resembling those of systems with larger halogens, with correspondingly stronger interaction energies. It is also shown that aromatic fluorine substitutions affect the optimal geometries of the halogen-bonded complexes, often as the result of secondary interactions.

Figure

Schematic models of halogen bonding complexes studied in this work

Keywords

Bromobenzenes Chlorobenzenes Electrostatic potentials Fluorine substitution Halogen bonding Iodobenzenes Tunability 

Supplementary material

894_2011_1015_MOESM1_ESM.doc (114 kb)
Fig. S1(DOC 114 kb)
894_2011_1015_MOESM2_ESM.doc (86 kb)
Fig. S2(DOC 86 kb)
894_2011_1015_MOESM3_ESM.doc (86 kb)
Fig. S3(DOC 86 kb)
894_2011_1015_MOESM4_ESM.doc (86 kb)
Fig. S4(DOC 85 kb)

References

  1. 1.
    Legon A (2010) Phys Chem Chem Phys 12:7736–7747CrossRefGoogle Scholar
  2. 2.
    Metrangolo P, Resnati G (2008) Halogen Bonding: Fundamentals and Applications Springer, BerlinGoogle Scholar
  3. 3.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  4. 4.
    Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63:1598–1607CrossRefGoogle Scholar
  5. 5.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395CrossRefGoogle Scholar
  6. 6.
    Metrangolo P, Resnati G, Pilati T, Liantonio R, Meyer F (2007) J Polym Sci 45:1–15Google Scholar
  7. 7.
    Voth AR, Ho PS (2007) Curr Top Med Chem 7:1336–1348CrossRefGoogle Scholar
  8. 8.
    Voth AR, Khuu P, Oishi K, Ho PS (2009) Nat Chem 1:74–79CrossRefGoogle Scholar
  9. 9.
    Lu YX, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) J Med Chem 52:2854–2862CrossRefGoogle Scholar
  10. 10.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Nat Acad Sci USA 101:16789–16794CrossRefGoogle Scholar
  11. 11.
    Brinck T, Murray JS, Politzer P (1992) Int J Quant Chem Biol Symp 19:57–64CrossRefGoogle Scholar
  12. 12.
    Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) J Mol Model 13:305–311CrossRefGoogle Scholar
  13. 13.
    Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) J Chem Theor Comput 5:155–163CrossRefGoogle Scholar
  14. 14.
    Shields Z, Murray JS, Politzer P (2010) Int J Quantum Chem 110:2823–2832CrossRefGoogle Scholar
  15. 15.
    Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650CrossRefGoogle Scholar
  16. 16.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  17. 17.
    Grabowski SJ, Bilewicz E (2006) Chem Phys Lett 427:51–55CrossRefGoogle Scholar
  18. 18.
    Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116CrossRefGoogle Scholar
  19. 19.
    Nyburg SC, Wong-Ng W (1979) Proc R Soc Lond A 367:29–45CrossRefGoogle Scholar
  20. 20.
    Stevens ED (1979) Mol Phys 37:27–45CrossRefGoogle Scholar
  21. 21.
    Tsirelson VG, Zou PF, Tang TH, Bader RFW (1995) Acta Cryst A51:143–153Google Scholar
  22. 22.
    Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AE (1994) J Am Chem Soc 116:4910–4918CrossRefGoogle Scholar
  23. 23.
    Riley KE, Hobza P (2008) J Chem Theor Comput 4:232–242CrossRefGoogle Scholar
  24. 24.
    Lu YX, Zou JW, Fan JC, Zhao WN, Jiang YJ, Yu QS (2009) J Comput Chem 30:725–732CrossRefGoogle Scholar
  25. 25.
    Kim CY, Chang JS, Doyon JB, Baird TT, Fierke CA, Jain A, Christianson DW (2000) J Am Chem Soc 122:12125–12134CrossRefGoogle Scholar
  26. 26.
    Kuhn B, Kollman PA (2000) J Am Chem Soc 122:3909–3916CrossRefGoogle Scholar
  27. 27.
    Raha K, van der Vaart AJ, Riley KE, Peters MB, Westerhoff LM, Kim H, Merz KM (2005) J Am Chem Soc 127:6583–6594CrossRefGoogle Scholar
  28. 28.
    Riley KE, Cui GL, Merz KM (2007) J Phys Chem B 111:5700–5707CrossRefGoogle Scholar
  29. 29.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  30. 30.
    Werner HJ, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pitzer P, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson, T (2008) MOLPRO (MOLPRO is a package of ab initio programs.)Google Scholar
  31. 31.
    Politzer P, Truhlar DG (1981) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Plenum, New YorkGoogle Scholar
  32. 32.
    Stewart RF (1979) Chem Phys Lett 65:335–342CrossRefGoogle Scholar
  33. 33.
    Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdisciplinary Reviews, in pressGoogle Scholar
  34. 34.
    Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142CrossRefGoogle Scholar
  35. 35.
    Naray-Szabó G, Ferenczy GG (1995) Chem Rev 95:829–847CrossRefGoogle Scholar
  36. 36.
    Politzer P, Murray JS (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in Computational Chemistry Vol 2. VCH, New YorkGoogle Scholar
  37. 37.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  38. 38.
    Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Chesseman JR, Zakrzewski VG, Montgomery Jr. JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Forseman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, AlLoham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2009) Guassian 09, Revision A.1. Gaussian Inc, Wallingford, CTGoogle Scholar
  40. 40.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kevin E. Riley
    • 1
  • Jane S. Murray
    • 2
  • Jindřich Fanfrlík
    • 3
  • Jan Řezáč
    • 3
  • Ricardo J. Solá
    • 1
  • Monica C. Concha
    • 4
  • Felix M. Ramos
    • 1
  • Peter Politzer
    • 2
  1. 1.Department of ChemistryUniversity of Puerto RicoSan JuanPuerto Rico
  2. 2.CleveTheoCompClevelandUSA
  3. 3.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular SystemsPrague 6Czech Republic
  4. 4.Department of ChemistryUniversity of New OrleansNew OrleansUSA

Personalised recommendations