Advertisement

Journal of Molecular Modeling

, Volume 17, Issue 11, pp 2741–2749 | Cite as

From sequence to 3D structure of hyperbranched molecules: application to surface modified PAMAM dendrimers

  • Teresa S. Barata
  • Steve Brocchini
  • Ian Teo
  • Sunil ShaunakEmail author
  • Mire ZlohEmail author
Original Paper

Abstract

The molecular modeling of hyperbranched molecules is currently constrained by difficulties in model building, due partly to lack of parameterization of their building blocks. We have addressed this problem with specific relevance to a class of hyperbranched macromolecules known as dendrimers by describing a new concept and developing a method that translates monomeric linear sequences into a full atomistic model of a hyperbranched molecule. Such molecular-modeling-based advances will enable modeling studies of important biological interactions between naturally occurring macromolecules and synthetic macromolecules. Our results also suggest that it should be possible to apply this sequence-based methodology to generate hyperbranched structures of other dendrimeric structures and of linear polymers.

Keywords

Hyperbranched molecule Dendrimer Molecular modeling Molecular dynamics 

Notes

Acknowledgments

This work was supported by US National Institutes of Health (NIH) grant U01 5U01AI075351-02

Supplementary material

894_2011_966_MOESM1_ESM.pdf (104 kb)
ESM 1 (PDF 104 kb)
894_2011_966_MOESM2_ESM.pdf (172 kb)
ESM 2 (PDF 171 kb)
894_2011_966_MOESM3_ESM.pdf (64 kb)
ESM 3 (PDF 64 kb)
894_2011_966_MOESM4_ESM.pdf (45 kb)
ESM 4 (PDF 45 kb)
894_2011_966_MOESM5_ESM.pdf (42 kb)
ESM 5 (PDF 41 kb)

References

  1. 1.
    Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev 57:2106–2129CrossRefGoogle Scholar
  2. 2.
    Shaunak S et al (2004) Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 22:977–984CrossRefGoogle Scholar
  3. 3.
    Malik N et al (2000) Dendrimers: relationship between structure and biocompatibility in vitro and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 65:133–148CrossRefGoogle Scholar
  4. 4.
    Dear JW et al (2005) Dendrimer-enhanced MRI as a diagnostic and prognostic biomarker of sepsis-induced acute renal failure in aged mice. Kidney Int 67:2159–2167CrossRefGoogle Scholar
  5. 5.
    Roberts BP et al (2008) The Dotted Cap Notation: a concise notation for describing variegated dendrimers. New J Chem 32:1543–1554CrossRefGoogle Scholar
  6. 6.
    Brünger AT (1992) XPLOR. A System for X-ray Crystallography and NMR. Available from: http://nmr.cit.nih.gov/xplor-nih/doc/current/xplor/
  7. 7.
    Schwieters CD et al (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73CrossRefGoogle Scholar
  8. 8.
    Barata TS et al (2010) Structural studies of biologically active glycosylated PAMAM dendrimers. J mol Model. doi: 10.1007/s00894-010-0907-1
  9. 9.
    Parameters CF (2010) Available from: http://mackerell.umaryland.edu/CHARMM_ff_params.html
  10. 10.
    Morefield GL et al (2007) Synthetic Toll-like receptor 4 agonist enhances vaccine efficacy in an experimental model of toxic shock syndrome. Clin Vaccine Immunol 14:1499–1504CrossRefGoogle Scholar
  11. 11.
    Available from: www.schrodinger.com
  12. 12.
    Jorgensen WL, Tirado-Rives J (2005) Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci USA 102:6665–6670CrossRefGoogle Scholar
  13. 13.
    Mohamadi F et al (1990) Macromodel—n integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11:440–467CrossRefGoogle Scholar
  14. 14.
    Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802CrossRefGoogle Scholar
  15. 15.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  16. 16.
    The Open Babel Package version 2.2.3 (accessed September 1, 2010)Google Scholar
  17. 17.
    MacKerell AD Jr, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265CrossRefGoogle Scholar
  18. 18.
    Guvench O et al (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564CrossRefGoogle Scholar
  19. 19.
    Feller SE et al (1997) Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. Biophys J 73:2269–2279CrossRefGoogle Scholar
  20. 20.
    Vanommeslaeghe K et al (2009) CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690Google Scholar
  21. 21.
    The Open Babel Package, v. [cited 2010; Available from: http://openbabel.sourceforge.net/
  22. 22.
    Lippert RA et al (2007) A common avoidable source of error in molecular dynamics integrators. J Chem Phys 126:046101–046102CrossRefGoogle Scholar
  23. 23.
    Bowers KJ, Dror RO, Shaw DE (2006) The midpoint method for parallelization of particle simulations. J Chem Phys 124:184109–184111CrossRefGoogle Scholar
  24. 24.
    Qiu D et al (1997) The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. J Phys Chem A 101:3005–3014CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of PharmacyUniversity of LondonLondonUK
  2. 2.Department of Medicine, Hammersmith HospitalImperial College LondonLondonUK

Personalised recommendations