Journal of Molecular Modeling

, Volume 17, Issue 12, pp 3151–3162 | Cite as

A theoretical thermodynamic investigation of cascade reactions in dinuclear octa-azacryptates involving carbon dioxide

  • Morad M. El-Hendawy
  • Niall J. EnglishEmail author
  • Damian A. Mooney
Original Paper


This paper investigates the thermodynamics of gas-phase CO2 cascade uptake-reactions in the form of carbonate or monomethylcarbonate anions in the host cavity of various dinuclear octa-azacryptates of m-CH2C6H4CH2 and 2,5-furano-spaced hosts, L 1 and L 2 cryptands, using density functional theory (DFT). The cascade process involves two stages, namely the formation of dinuclear cryptate complexes, and the subsequent formation of either μ-carbonato cryptate complexes or μ-monomethylcarbonato cryptates. The geometric and electronic structures were also investigated to determine the parameters that affect the stability of the complexes. Natural bond orbital (NBO) analysis was used to investigate the interactions between the trapped anion and its host. Ion selectivity was studied in terms of the formation of dinuclear cryptate complexes, while the basicity and nucleophilicity of cryptands towards Lewis acids was also studied, and good agreement was found vis-à-vis available experimental data.


Syn-anti μ-η1, η2 arrangement of monomethylcarbonate arrangement within the host cavity of [Cu2L1MeCO3]3+


DFT CO2 fixation Dinuclear cryptates Thermodynamic parameters NBO analysis 



The authors acknowledge useful conversations with Dr. Grace Morgan. This material is based upon works supported by Science Foundation Ireland (SFI) under Grant No. [07/SRC/B1160]. We also thank SFI and the Irish Center for High-End Computing for the provision of high-performance computing facilities.

Supplementary material

894_2011_965_MOESM1_ESM.doc (246 kb)
ESM 1 (DOC 245 kb)


  1. 1.
    Andrews TJ, Lorimer GH (1987) Rubisco: structure, mechanisms and prospects for improvement. In: Hatch MD, Boardman NK (eds) The biochemistry of plants, vol 10. Academic, New York, pp 131–218Google Scholar
  2. 2.
    Aresta M, Dibenedetto A (2007) Utilization of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992 and references thereinGoogle Scholar
  3. 3.
    Kong LY, Zhang ZH, Zhu HF, Kawaguchi H, Okamura T, Doi M, Chu Q, Sun WY, Ueyama N (2005) Copper(II) and zinc(II) complexes can fix atmospheric carbon dioxide. Angew Chem 117:4426–4429CrossRefGoogle Scholar
  4. 4.
    Kersting B (2001) Kohlendioxid-Fixierung an Zweikernkomplexen mit hydrophoben Bindungstaschen. Angew Chem 113:4109–4112CrossRefGoogle Scholar
  5. 5.
    Chen JM, Wei W, Feng XL, Lu TB (2007) CO2 fixation and transformation by a dinuclear copper cryptate under acidic conditions. Chem Asian J 2:710–719CrossRefGoogle Scholar
  6. 6.
    Kong LY, Zhu HF, Huang YQ, Kawaguchi H, Lu XH, Song Y, Liu GX, Sun WY, Ueyama N (2006) Cadmium(II) and copper(II) complexes with imidazole-containing tripodal polyamine ligands: pH and anion effects on carbon dioxide fixation and assembling. Inorg Chem 45:8098–8107CrossRefGoogle Scholar
  7. 7.
    Verdejo B, Aguilar J, Espana EG, Gavina P, Latorre J, Soriano C, Llinares JM, Domenech A (2006) CO2 fixation by Cu2+ and Zn2+ complexes of a terpyridinophane aza receptor. Crystal structures of Cu2+ complexes, pH-metric, spectroscopic, and electrochemical studies. Inorg Chem 45:3803–3815CrossRefGoogle Scholar
  8. 8.
    Derossi S, Bond AD, McKenzie CJ, Nelson J (2005) (μ2-Bicarbonato-κ2O, O′)[μ2–1, 4, 8, 11, 14, 18, 23, 27-octaaza-6, 16, 25(1, 3)-tribenzenabicyclo[9.9.9]nonacosaphane] dicopper(II) triperchlorate acetonitrile solvate. Acta Crystallogr E 61:m1379–m1382CrossRefGoogle Scholar
  9. 9.
    Dussart Y, Harding C, Dalgaard P et al. (2002) Cascade chemistry in azacryptand cages: bridging carbonates and methylcarbonates. J Chem Soc Dalton Trans 8:1704–1713Google Scholar
  10. 10.
    Bazzicalupi C, Bencini A, Bencini A, Bianchi A, Corana F, Fusi V, Giorgi C, Paoli P, Paoletti P, Valtancoli B, Zanchini C (1996) CO2 fixation by novel copper(ii) and zinc(II) macrocyclic complexes. a solution and solid state study. Inorg Chem 35:5540–5548CrossRefGoogle Scholar
  11. 11.
    Paddock RL, Nguyen ST (2001) Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J Am Chem Soc 123:11498–11499CrossRefGoogle Scholar
  12. 12.
    Escuer A, Mautner FA, Penalba E, Vicente R (1998) superexchange pathway for the different coordination modes of the carbonato bridge in polynuclear copper(II) compounds. Inorg Chem 37:4190–4196CrossRefGoogle Scholar
  13. 13.
    Kitajima N, Hikichi S, Tanaka M, Moro-oka Y (1993) Fixation of atmospheric CO2 by a series of hydroxo complexes of divalent metal ions and the implication for the catalytic role of metal ion in carbonic anhydrase. synthesis, characterization, and molecular structure of [LM(OH)]n (n = 1 or 2) and LM(.mu.-CO3)ML (M(II) = Mn, Fe, Co, Ni, Cu, Zn; L = HB(3,5-iso-Pr2pz)3). J Am Chem Soc 115:5496–5508CrossRefGoogle Scholar
  14. 14.
    Kato M, Ito T (1986) Syntheses, characterization, and structures of (monomethyl carbonato)–nickel(ii), –copper(ii), and –cobalt(ii) complexes with tetraazacycloalkanes obtained from CO2 uptake. Bull Chem Soc Jpn 59:285–294CrossRefGoogle Scholar
  15. 15.
    Kato M, Ito T (1985) Syntheses, characterization, and structures of (monomethyl carbonato)nickel(II), -copper(II), and -cobalt(II) complexes with tetraazacycloalkanes obtained from carbon dioxide uptake. Inorg Chem 24:504–508CrossRefGoogle Scholar
  16. 16.
    Kato M, Ito T (1985) Facile carbon dioxide uptake by zinc(II)-tetraazacycloalkane complexes. 2. X-ray structural studies of (.mu.-monomethyl carbonato)(1, 4, 8, 11-tetraazacyclotetradecane)zinc(II)perchlorate, bis(.mu.-monomethylcarbonato)tris[(1, 4, 8, 12-tetraazacyclopentadecane)zinc(II)] perchlorate, and (monomethylcarbonato)(1, 4, 8, 11-tetramethyl-1, 4, 8, 11-tetraazacyclotetradecane)zinc(II) perchlorate. Inorg Chem 24:509–514CrossRefGoogle Scholar
  17. 17.
    Lehn JM (1978) Cryptates: inclusion complexes of macropolycyclic receptor molecules. Pure Appl Chem 50:871–892, and references thereinCrossRefGoogle Scholar
  18. 18.
    Nelson J, McKee V, Morgan G (1998) Coordination chemistry of azacryptands. In: Karlin KD (ed) Progress in inorganic chemistry, vol 47. Wiley, New York, pp 191–192Google Scholar
  19. 19.
    Amendola V, Fabbrizzi L, Mangano C, Pallavicini P, Poggi A, Taglietti A (2001) Anion recognition by dimetallic cryptates. Coord Chem Rev 219–221:821–837CrossRefGoogle Scholar
  20. 20.
    Arthurs M, McKee V, Nelson J, Town RM (2001) Chemistry in cages: dinucleating azacryptand hosts and their cation and anion cryptates. J Chem Educ 78:1269–1272CrossRefGoogle Scholar
  21. 21.
    Arnaud-Neu F, Fuangswasdi S, Maubert B, Nelson J, McKee V (2000) Binding properties of octaaminocryptands. Inorg Chem 39:573–579CrossRefGoogle Scholar
  22. 22.
    Frisch MJ, Trucks GW, Schlegel HB et al (2009) GAUSSIAN09, Revision A. 02. Gaussian Inc, WallingfordGoogle Scholar
  23. 23.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  24. 24.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  25. 25.
    Stevens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  26. 26.
    Wang X, Wang H, Tan Y (2008) DFT study of the cryptand and benzocryptand and their complexes with alkali metal cations: Li+, Na+, K+. J Comput Chem 29:1423–1428CrossRefGoogle Scholar
  27. 27.
    Puchta R, Eldik RV (2007) Host–guest complexes of oligopyridine cryptands: prediction of ion selectivity by quantum chemical calculations. Eur J Inorg Chem 10:1120–1127CrossRefGoogle Scholar
  28. 28.
    Su JW, Burnette RR (2008) First principles investigation of noncovalent complexation: a [2.2.2]-cryptand ion-binding selectivity study chem. Phys Chem 9:1989–1996CrossRefGoogle Scholar
  29. 29.
    Glendening ED, Reed AE, Carpenter JE et al. (2003) Program as implemented in the Gaussian 09 packageGoogle Scholar
  30. 30.
    Pratihar S, Roy SJ (2010) Nucleophilicity and site selectivity of commonly used arenes and heteroarenes. J Org Chem 75:4957–4963CrossRefGoogle Scholar
  31. 31.
    Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091CrossRefGoogle Scholar
  32. 32.
    Carey FA, Sundberg RJ (1990) Advanced organic chemistry, Part A. Structure and mechanisms, 3rd edn. Plenum, New YorkGoogle Scholar
  33. 33.
    Menif R, Reibenspies J, Martell AE (1991) Synthesis, protonation constants, and copper(II) and cobalt(II) binding constants of a new octaaza macrobicyclic cryptand: (MX)3(TREN)2. Hydroxide and carbonate binding of the dicopper(II) cryptate and crystal structures of the cryptand and of the carbonato-bridged dinuclear copper(II) cryptate. Inorg Chem 30:3446–3454CrossRefGoogle Scholar
  34. 34.
    Fabbrizzi L, Pallavicini P, Parodi J, Perotti A, Sardone N, Taglietti A (1996) A structurally characterized azidebridged dinuclear nickel(II) cryptate. Inorg Chim Acta 244:7–9CrossRefGoogle Scholar
  35. 35.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Physiol 19:553–566CrossRefGoogle Scholar
  36. 36.
    Khopkar SM (1998) Basic concepts of analytical chemistry, 2nd edn. New Age International, New Delhi, pp 112–113Google Scholar
  37. 37.
    Escuer A, Vicente R, Kumar SB, Solans X, Font-Bardía M (1997) A novel tridentate coordination mode for the carbonatonickel system. J Chem Soc Dalton Trans 1997:403–408Google Scholar
  38. 38.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  39. 39.
    Kovács A, Nemcsok DS, Kocsis T (2010) Bonding interactions in EDTA complexes. J Mol Struc THEOCHEM 950:93–97CrossRefGoogle Scholar
  40. 40.
    Palmer DA, van Eldik R (1983) The chemistry of metal carbonato and carbon dioxide complexes. Chem Rev 83:651–731CrossRefGoogle Scholar
  41. 41.
    Rawle SC, Harding CJ, Moore P et al (1992) Crystal structure of an antiferromagnetically coupled p-carbonato-bridged dinickel(II) complex containing the pendent-arm macrocycle I -(3-dimethylaminopropyl)-l,5,9-triazacyclododecane (L1); a system which readily sequesters carbon dioxide from air. J Chem Soc Chem Commun 1992:1701–1703Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Morad M. El-Hendawy
    • 1
  • Niall J. English
    • 1
    Email author
  • Damian A. Mooney
    • 1
  1. 1.The SFI Strategic Research Cluster in Solar Energy Conversion and the Center for Synthesis and Chemical Biology, School of Chemical and Bioprocess EngineeringUniversity College DublinDublin 4Ireland

Personalised recommendations