Journal of Molecular Modeling

, Volume 17, Issue 10, pp 2569–2574 | Cite as

Sensitivity and the available free space per molecule in the unit cell

  • Miroslav Pospíšil
  • Pavel Vávra
  • Monica C. Concha
  • Jane S. Murray
  • Peter PolitzerEmail author
Original Paper


Invoking the known link between impact sensitivity and compressibility, we have expanded upon an earlier preliminary study of the significance of the available free space per molecule in the unit cell, ΔV. We express ΔV as Veff – Vint, where Veff corresponds to zero free space, Veff = molecular mass/density. Vint is the intrinsic gas phase molecular volume. We demonstrate that Vint can be appropriately defined as the volume enclosed by the 0.003 au contour of the molecule’s electronic density; this produces packing coefficients that have the range and average value found crystallographically. Measured impact sensitivities show an overall tendency to increase as ΔV becomes larger. For nitramines, the dependence upon ΔV is rather weak; we interpret this as indicating that a single overriding factor dominates their initiation mechanism, e.g., N-NO2 rupture. (An analogous situation appears to hold for many organic azides.) In addition to the conceptual significance of identifying ΔV as a factor in impact sensitivity, the present results allow rough estimates of relative sensitivities that are not known.


Impact sensitivities, h 50, plotted against available free space per molecule in the unit cell, ΔV, for 7 nitramines (left) and 14 non-nitramines (right)


Available free space Energetic compounds Impact sensitivity Molecular volumes Packing coefficients 



MP and PV acknowledge the support of this work by the Ministry of Education, Youth and Sports of the Czech Republic as a part of its research projects Nos. MSM0021620835 (MP) and MSM0021627501 (PV), respectively. PP, JSM and MCC appreciate the support of the Defense Threat Reduction Agency, Contract No. HDTRA1-07-1-0002, Project Officer Dr. William Wilson.


  1. 1.
    Iyer S, Slagg N (1988) In: Liebman JF, Greenberg A (eds) Structure and reactivity. VCH, New York, Ch 7Google Scholar
  2. 2.
    Storm CB, Stine JR, Kramer JF (1990) In: Bulusu SN (ed) Chemistry and physics of energetic materials. Kluwer, Dordrecht, Ch 27Google Scholar
  3. 3.
    Meyer R, Köhler J, Hornburg A (2007) Explosives, 6th edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  4. 4.
    Zeman S, Friedl Z, Koci J, Pelikan V, Majzlik J (2006) Centr Europ J Energ Mater 3:27–44Google Scholar
  5. 5.
    Zeman S, Friedl Z, Koci J (2007) Centr Europ J Energ Mater 4:23–31Google Scholar
  6. 6.
    Brill TB, James K (1993) Chem Rev 93:2667–2692CrossRefGoogle Scholar
  7. 7.
    Sućeska M (1995) Test methods for explosives. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1783CrossRefGoogle Scholar
  9. 9.
    Dlott DD (2003) In: Politzer P, Murray JS (eds) Energetic materials, part 2. Detonation, combustion. Elsevier, Amsterdam, Ch 6Google Scholar
  10. 10.
    Doherty RM, Watt DS (2008) Propellants Explos Pyrotech 33:4–13CrossRefGoogle Scholar
  11. 11.
    Kamlet MJ (1976) Proc 6th Symp (Internat) Deton, Report No ACR 221, Office of Naval Research, p 312Google Scholar
  12. 12.
    Kamlet MJ, Adolph HG (1979) Propellants Explos 4:30–34CrossRefGoogle Scholar
  13. 13.
    Politzer P, Murray JS (2003) In: Politzer P, Murray JS (eds) Energetic materials, part 2. Detonation, combustion. Elsevier, Amsterdam, Ch 1Google Scholar
  14. 14.
    Zeman S (2007) Struct Bond 125:195–271CrossRefGoogle Scholar
  15. 15.
    Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97CrossRefGoogle Scholar
  16. 16.
    Brill TB, Oyumi Y (1986) J Phys Chem 90:2679–2682CrossRefGoogle Scholar
  17. 17.
    Oyumi Y, Brill TB (1988) Propellants Explos Pyrotech 13:69–73CrossRefGoogle Scholar
  18. 18.
    Stewart PH, Jeffries JM, Zellweger JM, McMillen DF, Golden DM (1989) J Phys Chem 93:3557–3563CrossRefGoogle Scholar
  19. 19.
    Politzer P, Murray JS, Lane P, Sjoberg P, Adolph HG (1991) Chem Phys Lett 181:78–82CrossRefGoogle Scholar
  20. 20.
    Kohno Y, Maekawa K, Tsuchioka T, Hashizume T, Imamura A (1994) Combust Flame 96:343–350CrossRefGoogle Scholar
  21. 21.
    Kohno Y, Ueda K, Imamura A (1996) J Phys Chem 100:4701–4712CrossRefGoogle Scholar
  22. 22.
    Oxley JC (2003) In: Politzer P, Murray JS (eds) Energetic materials, part 1. Decomposition, crystal and molecular properties. Elsevier, Amsterdam, Ch 1Google Scholar
  23. 23.
    Storm CB, Ryan RR, Ritchie JP, Hall JH, Bachrach SM (1989) J Phys Chem 93:1000–1007CrossRefGoogle Scholar
  24. 24.
    Politzer P, Grice ME, Seminario JM (1997) Int J Quantum Chem 61:389–392CrossRefGoogle Scholar
  25. 25.
    Murray JS, Lane P, Göbel M, Klapötke TM, Politzer P (2009) Theor Chem Acc 124:355–363CrossRefGoogle Scholar
  26. 26.
    Gindulyte A, Massa A, Huang L, Karle J (1999) J Phys Chem A 103:11045–11051CrossRefGoogle Scholar
  27. 27.
    Liu W-G, Zybin SV, Dasgupta S, Klapötke TM, Goddard WA III (2009) J Am Chem Soc 131:7490–7491CrossRefGoogle Scholar
  28. 28.
    Shackelford SA (2008) Centr Europ J Energ Mater 5:75–101Google Scholar
  29. 29.
    Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901CrossRefGoogle Scholar
  30. 30.
    Tsai DH, Armstrong RW (1994) J Phys Chem 98:10997–11000CrossRefGoogle Scholar
  31. 31.
    Politzer P, Boyd S (2002) Struct Chem 13:105–113CrossRefGoogle Scholar
  32. 32.
    Dick JJ (1984) Appl Phys Lett 44:859–861CrossRefGoogle Scholar
  33. 33.
    Kunz AB (1996) Mater Res Soc Symp Proc 418:287–292CrossRefGoogle Scholar
  34. 34.
    Eckhardt CJ, Gavezzotti A (2007) J Phys Chem B 111:3430–3437CrossRefGoogle Scholar
  35. 35.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  36. 36.
    Politzer P, Murray JS (1998) J Mol Struct THEOCHEM 425:107–114CrossRefGoogle Scholar
  37. 37.
    Murray JS, Politzer P (2010) Wiley Interdisciplinary Reviews, in pressGoogle Scholar
  38. 38.
    Qiu L, Xiao H, Gong X, Ju X, Zhu W (2007) J Hazard Mater 141:280–288CrossRefGoogle Scholar
  39. 39.
    Rice BM, Hare JJ, Byrd EFC (2007) J Phys Chem A 111:10874–10879CrossRefGoogle Scholar
  40. 40.
    Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095–2101CrossRefGoogle Scholar
  41. 41.
    Frisch MJ et al. (2009) Gaussian 09. Gaussian Inc, WallingfordGoogle Scholar
  42. 42.
    Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691CrossRefGoogle Scholar
  43. 43.
    Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) J Phys Chem B 109:8978–8982CrossRefGoogle Scholar
  44. 44.
    Hammerl A, Klapötke TM, Mayer P, Weigand JJ (2005) Propellants Explos Pyrotech 30:17–26CrossRefGoogle Scholar
  45. 45.
    Klapötke TM, Martin F, Sproll S, Stierstorfer J (2009) Proc 12th Seminar on new trends in research of energetic materials, part I. University of Pardubice, Czech Republic, pp 327–340Google Scholar
  46. 46.
    Lewis JP, Sewell TD, Evans RB, Voth GA (2000) J Phys Chem B 104:1009–1013CrossRefGoogle Scholar
  47. 47.
    Herrmann M, Engel W, Eisenreich N (1992) Propellants Explos Pyrotech 17:190–195CrossRefGoogle Scholar
  48. 48.
    Sikder AK, Sikder N (2004) J Hazard Mater A112:1–15CrossRefGoogle Scholar
  49. 49.
    Politzer P, Lane P, Murray JS (2011) Centr Europ J Energ Mat 8:39–52 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Miroslav Pospíšil
    • 1
  • Pavel Vávra
    • 2
  • Monica C. Concha
    • 3
  • Jane S. Murray
    • 3
    • 4
  • Peter Politzer
    • 3
    • 4
    Email author
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic
  2. 2.Institute of Energetic Materials, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  3. 3.Department of ChemistryUniversity of New OrleansNew OrleansUSA
  4. 4.CleveTheoCompClevelandUSA

Personalised recommendations