Journal of Molecular Modeling

, Volume 17, Issue 10, pp 2707–2716 | Cite as

Ligand supported homology modeling and docking evaluation of CCR2: docked pose selection by consensus scoring

  • Jong-Hoon Kim
  • Jee Woong Lim
  • Seung-Woo Lee
  • Kyoungrak Kim
  • Kyoung Tai No
Short Comment


Chemokine receptor 2 (CCR2) is a G-protein coupled receptor (GPCR) and a crucial target for various inflammatory and autoimmune diseases. The structure based antagonists design for many GPCRs, including CCR2, is restricted by the lack of an experimental three dimensional structure. Homology modeling is widely used for the study of GPCR-ligand binding. Since there is substantial diversity for the ligand binding pocket and binding modes among GPCRs, the receptor-ligand binding mode predictions should be derived from homology modeling with supported ligand information. Thus, we modeled the binding of our proprietary CCR2 antagonist using ligand supported homology modeling followed by consensus scoring the docking evaluation based on all modeled binding sites. The protein-ligand model was then validated by visual inspection of receptor-ligand interaction for consistency of published site-directed mutagenesis data and virtual screening a decoy compound database. This model was able to successfully identify active compounds within the decoy database. Finally, additional hit compounds were identified through a docking-based virtual screening of a commercial database, followed by a biological assay to validate CCR2 inhibitory activity. Thus, this procedure can be employed to screen a large database of compounds to identify new CCR2 antagonists.


CCR2 Consensus scoring Docking evaluation GPCR Ligand supported homology modeling Virtual screening 


  1. 1.
    Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR (1994) Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Nat Acad Sci USA 91:2752–2756CrossRefGoogle Scholar
  2. 2.
    Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176Google Scholar
  3. 3.
    Daly C, Rollins BJ (2003) Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: Therapeutic opportunities and controversies. Microcirculation 10:247Google Scholar
  4. 4.
    Szekanecz Z, Szucs G, Szanto S, Koch AE (2006) Chemokines in rheumatic diseases. Curr Drug Targets 7:91–102CrossRefGoogle Scholar
  5. 5.
    Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621CrossRefGoogle Scholar
  6. 6.
    Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874CrossRefGoogle Scholar
  7. 7.
    Hancock WW, Gao W, Faia KL, Csizmadia V (2000) Chemokines and their receptors in allograft rejection. Curr Opin Immunol 12:511–516CrossRefGoogle Scholar
  8. 8.
    Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, Ohtsuka-Kowatari N, Kumagai K, Sakamoto K, Kobayashi M, Yamauchi T, Ueki K, Oishi Y, Nishimura S, Manabe I, Hashimoto H, Ohnishi Y, Ogata H, Tokuyama K, Tsunoda M, Ide T, Murakami K, Nagai R, Kadowaki T (2006) Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281:26602–26614CrossRefGoogle Scholar
  9. 9.
    Moree WJ, K-i K, Ramirez-Weinhouse MM, Shiota T, Imai M, Tsutsumi T, Sudo M, Endo N, Muroga Y, Hada T, Fanning D, Saunders J, Kato Y, Myers PL, Tarby CM (2008) Potent antagonists of the ccr2b receptor. Part 3: SAR of the 3-aminopyrrolidine series. Bioorg Med Chem Lett 18:1869–1873CrossRefGoogle Scholar
  10. 10.
    Moree WJ, K-i K, Ramirez-Weinhouse MM, Shiota T, Imai M, Sudo M, Tsutsumi T, Endo N, Muroga Y, Hada T, Tanaka H, Morita T, Greene J, Barnum D, Saunders J, Kato Y, Myers PL, Tarby CM (2004) Small molecule antagonists of the CCR2b receptor. Part 2: Discovery process and initial structure-activity relationships of diamine derivatives. Bioorg Med Chem Lett 14:5413–5416CrossRefGoogle Scholar
  11. 11.
    Lim JW, Oh Y, Kim J-H, Oak M-H, Na Y, Lee J-O, Lee S-W, Cho H, Park W-K, Choi G, Kang J (2010) Synthesis and biological evaluation of 3-aminopyrrolidine derivatives as CC chemokine receptor 2 antagonists. Bioorg Med Chem Lett 20:2099–2102CrossRefGoogle Scholar
  12. 12.
    Shacham S, Marantz Y, Bar-Haim S, Kalid O, Warshaviak D, Avisar N, Inbal B, Heifetz A, Fichman M, Topf M, Naor Z, Noiman S, Becker OM (2004) Predict modeling and in-silico screening for G-protein coupled receptors. Proteins 57:51–86CrossRefGoogle Scholar
  13. 13.
    Trabanino RJ, Hall SE, Vaidehi N, Floriano WB, Kam VWT, Goddard WA 3rd (2004) First principles predictions of the structure and function of G-protein-coupled receptors: Validation for bovine rhodopsin. Biophys J 86:1904–1921CrossRefGoogle Scholar
  14. 14.
    Vaidehi N, Floriano WB, Trabanino R, Hall SE, Freddolino P, Choi EJ, Zamanakos G, Iii WAG (2002) Prediction of structure and function of G protein-coupled receptors. Proc Nat Acad Sci USA 99:12622–12627CrossRefGoogle Scholar
  15. 15.
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745CrossRefGoogle Scholar
  16. 16.
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein coupled receptor. Science 318:1258–1265CrossRefGoogle Scholar
  17. 17.
    Rasmussen SGF, Choi H-J, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450:383–387CrossRefGoogle Scholar
  18. 18.
    Evers A, Klebe G (2004) Ligand-supported homology modeling of G-protein-coupled receptor sites: Models sufficient for successful virtual screening13. Angew Chem Int Edit 43:248–251CrossRefGoogle Scholar
  19. 19.
    Evers A, Gohlke H, Klebe G (2003) Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials. J Mol Biol 334:327–345CrossRefGoogle Scholar
  20. 20.
    Cavasotto CN, Orry AJW, Murgolo NJ, Czarniecki MF, Kocsi SA, Hawes BE, O'Neill KA, Hine H, Burton MS, Voigt JH, Abagyan RA, Bayne ML, Monsma FJ (2008) Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J Med Chem 51:581–588CrossRefGoogle Scholar
  21. 21.
    Dalton JAR, Jackson RM (2010) Homology-modelling protein-ligand interactions: Allowing for ligand-induced conformational change. J Mol Biol 399:645–661CrossRefGoogle Scholar
  22. 22.
    Cd G, Rognan D (2009) Customizing G protein-coupled receptor models for structure-based virtual screening. Curr Pharm Des 15:4026–4048CrossRefGoogle Scholar
  23. 23.
    Diller DJ, Merz KM (2001) High throughput docking for library design and library prioritization. Proteins 43:113–124CrossRefGoogle Scholar
  24. 24.
    Rao SN, Head MS, Kulkarni A, LaLonde JM (2007) Validation studies of the site-directed docking program Libdock. J Chem Inf Model 47:2159–2171CrossRefGoogle Scholar
  25. 25.
    Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815CrossRefGoogle Scholar
  26. 26.
    Laskowski RA, MacArthur MW, Moss D, Thornton JM (1993) PROCHEK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  27. 27.
    Smellie A, Teig SL, Towbin P (1995) Poling: Promoting conformational variation. J Comput Chem 16:171–187CrossRefGoogle Scholar
  28. 28.
    Krammer A, Kirchhoff PD, Jiang X, Venkatachalam CM, Waldman M (2005) Ligscore: a novel scoring function for predicting binding affinities. J Mol Graph Model 23:395–407CrossRefGoogle Scholar
  29. 29.
    Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996Google Scholar
  30. 30.
    Muegge I, Martin YC (1999) A general and fast scoring function for protein − ligand interactions: a simplified potential approach. J Med Chem 42:791–804CrossRefGoogle Scholar
  31. 31.
    Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DR, Fogel LJ, Freer ST (1995) Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem Biol 2:317–324CrossRefGoogle Scholar
  32. 32.
    Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aid Mol Des 8:243–256CrossRefGoogle Scholar
  33. 33.
    Wang R, Wang S (2001) How does consensus scoring work for virtual library screening? An idealized computer experiment. J Chem Inf Comput Sci 41:1422–1426Google Scholar
  34. 34.
    Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) Ligandfit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21:289–307CrossRefGoogle Scholar
  35. 35.
    Pearlman DA, Charifson PS (2001) Improved scoring of ligand − protein interactions using owfeg free energy grids. J Med Chem 44:502–511CrossRefGoogle Scholar
  36. 36.
    Berkhout TA, Blaney FE, Bridges AM, Cooper DG, Forbes IT, Gribble AD, Groot PHE, Hardy A, Ife RJ, Kaur R, Moores KE, Shillito H, Willetts J, Witherington J (2003) CCR2: characterization of the antagonist binding site from a combined receptor modeling/mutagenesis approach. J Med Chem 46:4070–4086CrossRefGoogle Scholar
  37. 37.
    Hall SE, Mao A, Nicolaidou V, Finelli M, Wise EL, Nedjai B, Kanjanapangka J, Harirchian P, Chen D, Selchau V, Ribeiro S, Schyler S, Pease JE, Horuk R, Vaidehi N (2009) Elucidation of binding sites of dual antagonists in the human chemokine receptors CCR2 and CCR5. Mol Pharmacol 75:1325–1336CrossRefGoogle Scholar
  38. 38.
    Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations of G protein-coupled receptors. Methods Neurosci 25:366–428CrossRefGoogle Scholar
  39. 39.
    Rosenkilde MM, Schwartz TW (2006) GluVII:06 - a highly conserved and selective anchor point for non-peptide ligands in chemokine receptors. Curr Top Med Chem 6:1319–1333Google Scholar
  40. 40.
    Yang J-M, Chen Y-F, Shen T-W, Kristal BS, Hsu DF (2005) Consensus scoring criteria for improving enrichment in virtual screening. J Chem Inf Model 45:1134–1146CrossRefGoogle Scholar
  41. 41.
    Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303CrossRefGoogle Scholar
  42. 42.
    Carter PH, Tebben AJ (2009) The use of receptor homology modeling to facilitate the design of selective chemokine receptor antagonists. In: Handel TH, Hamel DJ (eds) Method in enzymology, vol 461. Academic, San Diego, pp 249–279Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jong-Hoon Kim
    • 1
    • 2
  • Jee Woong Lim
    • 2
    • 3
  • Seung-Woo Lee
    • 2
  • Kyoungrak Kim
    • 2
  • Kyoung Tai No
    • 1
    • 4
  1. 1.Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
  2. 2.Research and Development CenterYangJi ChemicalsSuwonRepublic of Korea
  3. 3.Department of ChemistrySejong UniversitySeoulRepublic of Korea
  4. 4.Bioinformatics and Molecular Design Research CenterSeoulRepublic of Korea

Personalised recommendations