Journal of Molecular Modeling

, Volume 17, Issue 12, pp 3209–3217 | Cite as

Formation of the Vilsmeier-Haack complex: the performance of different levels of theory

  • Gül Altınbaş Özpınar
  • Dieter E. Kaufmann
  • Timothy Clark
Original Paper


Because of discrepancies in the available experimental data, an extensive theoretical investigation of the formation of the Vilsmeier-Haack (VH) complex has been carried out. The barriers to complex formation calculated using eight different density functional methods (BLYP, B2-PLYP, B3LYP, B3PW91, MPW1K, M06-2X, and PBE1PBE), MP2, and extrapolation techniques (CBS-QB3, G3B3) with several basis sets (6 − 31 + G**, 6 − 311++G**, 6 − 311 + (3df,2p), aug-cc-pVDZ, and aug-cc-pVTZ) were compared with experimental data. For the overall reaction, MP2/aug-cc-pVDZ and M06-2X/6−31 + G(d,p) perform best compared to the CBS techniques. The results help clarify some open mechanistic questions.


Ab initio DFT Vilsmeier reaction 

Supplementary material

894_2010_941_MOESM1_ESM.pdf (461 kb)
Supplementary information (PDF 460 kb)


  1. 1.
    Vilsmeier A, Haack A (1927) Über die Einwirkung von Halogenphosphor auf Alkyl-formanilide. Eine neue Methode zur Darstellung sekundärer und tertiärer p-Alkylamino-benzaldehyde. Ber 60:119–122. doi:10.1002/cber.19270600118 Google Scholar
  2. 2.
    Awad IMA (1992) Studies on the Vilsmeier-haack reaction. Part XIII: Novel heterocyclo-substituted 4, 4′-bi-pyrazolyl dithiocarbamate derivatives. J Chem Technol Biotechnol 56:339–345. doi:10.1002/jctb.280560403 CrossRefGoogle Scholar
  3. 3.
    Awad IMA, Hassan KM (1990) Studies on the vilsmeier-haack reaction. Part iv. Synthesis and reaction of some 3-methy l-l-phenyl-4-(acetyl; iminoacetyl and thioacetyl)-2-pyrazolin-5-thione. Phosphorus Sulfur 47:311–317. doi:10.1080/10426509008037983 CrossRefGoogle Scholar
  4. 4.
    Yokoyama Y, Okuyama N, Iwadate S, Momoi T, Murakami Y (1990) Synthetic studies of indoles and related compounds. Part 22. The Vilsmeier–Haack reaction of N-benzyl-1,2,3,4-tetrahydrocarbazoles and its synthetic application to olivacine and ellipticine. J Chem Soc Perkin Trans 1:1319–1329. doi:10.1039/P19900001319 CrossRefGoogle Scholar
  5. 5.
    Kiyomi K, Motonobu I, Takeshi K (1971) Thiamine derivatives of disulfide type. XI. Oxidation of dipropyl disulfide with hydrogen peroxide and properties of the products. Chem Pharm Bull 19:2466–2471Google Scholar
  6. 6.
    Chodankar NK, Seshadri S (1985) Studies in the vilsmeier-haack reaction: part XXV—synthesis of 3-hetarylcoumarins by the application of the vilsmeier-haack reaction. Dyes Pigm 6:313–319. doi:10.1016/0143-7208(85)85001-4 CrossRefGoogle Scholar
  7. 7.
    Awad IMA (1990) Studies in the Vilsmeier-Haack reaction, part VII: Synthesis and reaction of 3-methyl-1-phenyl-4-acetyl hydrazono 2-pyrazoline-5-one(-5-thione). Monatsh Chem 121:1023–1030. doi:10.1007/BF00809252 CrossRefGoogle Scholar
  8. 8.
    Alunni S, Linda P, Marino G, Santini S, Savelli G (1972) The mechanism of the Vilsmeier–Haack reaction. Part II. A kinetic study of the formylation of thiophen derivatives with dimethylformamide and phosphorus oxychloride or carbonyl chloride in 1,2-dichloroethane. J Chem Soc Perkin Trans 2:2070–2073. doi:10.1039/P29720002070 Google Scholar
  9. 9.
    Bosshard HH, Zollinger H (1959) Die Synthese von Aldehyden und Ketonen mit Amidchloriden und VILSMEIER-Reagenzien. Helv Chim Acta 42:1659. doi:10.1002/hlca.19590420527 CrossRefGoogle Scholar
  10. 10.
    Bredereck H, Gompper R, Klemm K (1959) Säureamid-Reaktionen XVI. Selbstkondensation N.N-disubstituierter Säureamide. Chem Ber 92:1456–1460. doi:10.1002/cber.19590920631 CrossRefGoogle Scholar
  11. 11.
    Martin GJ, Martin M (1963) Research on the Vilsmeier -Haack reaction. I. Study of the structure of the intermediary complexes by nuclear magnetic resonance. Bull Soc Chim Fr 637-646Google Scholar
  12. 12.
    Arnold Z, Holy A (1962) Synthetic reactions of dimethylformamide. XIV. Some new findings on adducts of the Vilsmeier-Haack type. Collect Czech Chem C 27:2886–2897Google Scholar
  13. 13.
    Fritz H, Oehl R (1971) Synthesen in der Reihe der Indole und Indolalkaloide, XII. Halogen-Sauerstoff-Austausch zwischen Formamidchloriden und Formamiden, nachgewiesen bei der Einführung deuterierter Formylgruppen nach Vilsmeier. Liebigs Ann Chem 749:159–167. doi:10.1002/jlac.19717490118 Google Scholar
  14. 14.
    Martin GJ, Poignant S, Filleux ML, Quemeneur MT (1970) Recherches sur la reaction de vilsmeier-haack etude du mecanisme de formation du complexe par des mesures cinetiques en resonance magnetique nucleaire. Tetrahedron Lett 58:5061–5064. doi:10.1016/S0040-4039(00)96986-7 CrossRefGoogle Scholar
  15. 15.
    Dyer UC, Henderson DA, Mitchell MB, Tiffin PD (2002) Scale-up of a vilsmeier formylation reaction: use of hel auto-mate and simulation techniques for rapid and safe transfer to pilot plant from laboratory. Org Process Res Dev 6:311–316. doi:10.1021/op0155211 CrossRefGoogle Scholar
  16. 16.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision D.02. Gaussian Inc, PittsburghGoogle Scholar
  17. 17.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc, WallingfordGoogle Scholar
  18. 18.
    Nyden MR, Petersson GA (1981) Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions. J Chem Phys 75:1843–1862. doi:10.1063/1.442208 CrossRefGoogle Scholar
  19. 19.
    Petersson GA, Al-Laham MA (1991) A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys 94:6081–6090. doi:10.1063/1.460447 CrossRefGoogle Scholar
  20. 20.
    Petersson GA, Tensfeldt TG, Montgomery JA Jr (1991) A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J Chem Phys 94:6091–6101. doi:10.1063/1.460448 CrossRefGoogle Scholar
  21. 21.
    Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) Gaussian-3 theory using density functional geometries and zero-point energies. J Chem Phys 110:7650–7657. doi:10.1063/1.478676 CrossRefGoogle Scholar
  22. 22.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. doi:10.1021/jp810292n CrossRefGoogle Scholar
  23. 23.
    Becke AD (1996) Density functional thermochemistry. IV. A new dynamical correlation functional and implications for exact–exchange mixing. J Chem Phys 104:10401046. doi:10.1063/1.470829 CrossRefGoogle Scholar
  24. 24.
    Adamo C, Barone V (1997) Toward reliable adiabatic connection models free from adjustable parameters. Chem Phys Lett 274:242–250. doi:10.1016/S0009-2614(97)00651-9 CrossRefGoogle Scholar
  25. 25.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  26. 26.
    Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108. doi:10.1063/1.2148954 CrossRefGoogle Scholar
  27. 27.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913 CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539. doi:10.1103/PhysRevB.54.16533 CrossRefGoogle Scholar
  29. 29.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  30. 30.
    Lynch BJ, Truhlar DG (2002) What are the best affordable multi-coefficient strategies for calculating transition state geometries and barrier heights? J Phys Chem A 106:842–846. doi:10.1021/jp014002x CrossRefGoogle Scholar
  31. 31.
    Lynch BJ, Truhlar DG (2002) How well can hybrid density functional methods predict transition state geometries and barrier heights? J Phys Chem A 105:2936–2941. doi:10.1021/jp004262z CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241. doi:10.1007/s00214-007-0310-x CrossRefGoogle Scholar
  33. 33.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622. doi:10.1103/PhysRev.46.618 CrossRefGoogle Scholar
  34. 34.
    Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728. doi:10.1063/1.1674902 CrossRefGoogle Scholar
  35. 35.
    Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261. doi:10.1063/1.1677527 CrossRefGoogle Scholar
  36. 36.
    McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys 72:5639–5648. doi:10.1063/1.438980 CrossRefGoogle Scholar
  37. 37.
    Woon DE, Dunning TH Jr (1993) Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J Chem Phys 98:1358–1371. doi:10.1063/1.464303 CrossRefGoogle Scholar
  38. 38.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806. doi:10.1063/1.462569 CrossRefGoogle Scholar
  39. 39.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) Efficient diffuse function-augmented basis-sets for anion calculations. 3. The 3-21+G basis set for 1st-row elements, Li-F. J Comput Chem 4:294–301. doi:10.1002/jcc.540040303 CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269. doi:10.1063/1.447079 CrossRefGoogle Scholar
  41. 41.
    Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129. doi:10.1016/0301-0104(81)85090-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Gül Altınbaş Özpınar
    • 1
    • 2
    • 3
  • Dieter E. Kaufmann
    • 4
  • Timothy Clark
    • 1
    • 2
  1. 1.Computer-Chemie-CentrumFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Excellence Cluster Engineering of Advanced MaterialsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Department of Chemistry, Faculty of Science and LettersKırklareli UniversityKırklareliTurkey
  4. 4.Technische Universität ClausthalInstitut für Organische ChemieClausthal-ZellerfeldGermany

Personalised recommendations