Journal of Molecular Modeling

, Volume 17, Issue 10, pp 2585–2600 | Cite as

AM1* parameters for palladium and silver

Original Paper


We report the parameterization of AM1* for the elements palladium and silver. The basis sets for both metals contain one set each of s-, p- and d-orbitals. AM1* parameters are now available for H, C, N, O and F (which use the original AM1 parameters), Al, Si, P, S, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Zr, Mo, Pd, Ag, I and Au. The performance and typical errors of AM1* are discussed for Pd and Ag and compared with the PM6 Hamiltonian.


AM1* Palladium parameters Semiempirical MO theory Silver parameters 



This work was supported by the Deutsche Forschungsgemeinschaft as an individual grant (Cl85/17-1) and as part of GK312 “Homogeneous and Heterogeneous Electron Transfer” and SFB583 “Redox–Active Metal Complexes: Control of Reactivity via Molecular Architecture.”

Supplementary material

894_2010_940_MOESM1_ESM.doc (390 kb)
The values and the sources of the parameterization data. (DOC 390 kb)


  1. 1.
    Winget P, Horn AHC, Selçuki C, Martin B, Clark T (2003) J Mol Model 9:408–414CrossRefGoogle Scholar
  2. 2.
    Winget P, Clark T (2005) J Mol Model 11:439–456CrossRefGoogle Scholar
  3. 3.
    Kayi H, Clark T (2007) J Mol Model 13:965–979CrossRefGoogle Scholar
  4. 4.
    Kayi H, Clark T (2009) J Mol Model 15:295–308CrossRefGoogle Scholar
  5. 5.
    Kayi H, Clark T (2009) J Mol Model 15:1253–1269CrossRefGoogle Scholar
  6. 6.
    Kayi H, Clark T (2010) J Mol Model 16:29–47CrossRefGoogle Scholar
  7. 7.
    Kayi H (2010) J Mol Model 16:1029–1038CrossRefGoogle Scholar
  8. 8.
    Kayi H, Clark T (2010) J Mol Model 16:1109–1126CrossRefGoogle Scholar
  9. 9.
    Kayi H (2009) Parameterization of the AM1* semiempirical molecular orbital method for the first row transition metals and other elements (dissertation). Erlangen-Nürnberg University, ErlangenGoogle Scholar
  10. 10.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  11. 11.
    Voityuk AA, Rösch N (2000) J Phys Chem A 104:4089–4094CrossRefGoogle Scholar
  12. 12.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899–4907CrossRefGoogle Scholar
  13. 13.
    Thiel W (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 1599Google Scholar
  14. 14.
    Stewart JJP (1989) J Comput Chem 10:209–220CrossRefGoogle Scholar
  15. 15.
    Stewart JJP (1989) J Comput Chem 10:221–264CrossRefGoogle Scholar
  16. 16.
    Stewart JJP (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 2080Google Scholar
  17. 17.
    Levandovskiy IA, Shubina TE, Fokin AA (2010) J Mol Model 16:513–522CrossRefGoogle Scholar
  18. 18.
    Rodionov VN, Chernyaev BV, Levandovskiy IA, Shubina TE, Fokin AA (2005) Theor Exp Chem 41:1–6CrossRefGoogle Scholar
  19. 19.
    Privalov T, Linde C, Zetterberg K, Moberg C (2005) Organometallics 24:885–893CrossRefGoogle Scholar
  20. 20.
    Carvajal MA, Miscione GP, Novoa JJ, Bottoni A (2005) Organometallics 24:2086–2096CrossRefGoogle Scholar
  21. 21.
    Winget P, Clark T (2004) J Comput Chem 25:725–733CrossRefGoogle Scholar
  22. 22.
    Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian 03. Gaussian Inc., WallingfordGoogle Scholar
  23. 23.
    Dunning TH Jr, Hay PJ (1976) In: Schaefer HF III (ed) Modern theoretical chemistry, vol 3. Plenum, New York, pp 1–28Google Scholar
  24. 24.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  25. 25.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:284–298CrossRefGoogle Scholar
  26. 26.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  27. 27.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  28. 28.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  29. 29.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  30. 30.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  31. 31.
    Linstrom P, Mallard W (2003) NIST chemistry webbook: NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg (see
  32. 32.
    Stewart JJP (2007) MOPAC: set of individual molecules.
  33. 33.
    Cambridge Crystallographic Data Centre (2007) Cambridge Structural Database, v.5.28, Cambridge Crystallographic Data Centre, CambridgeGoogle Scholar
  34. 34.
    Clark T, Alex A, Beck B et al (2008) VAMP 10.0. Computer-Chemie-Centrum, Universität Erlangen-Nürnberg, ErlangenGoogle Scholar
  35. 35.
    Stewart JJP (2008) MOPAC 2009. Stewart Computational Chemistry, Colorado Springs (see
  36. 36.
    Stewart JJP (2007) J Mol Model 13:1173–1213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Computer-Chemie-Centrum and Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Department of ChemistryUniversity of HawaiiHonoluluUSA

Personalised recommendations