Journal of Molecular Modeling

, Volume 17, Issue 8, pp 2051–2060 | Cite as

Structural studies of biologically active glycosylated polyamidoamine (PAMAM) dendrimers

Original Paper

Abstract

The partial modification of carboxylic acid terminated polyamidoamine (PAMAM) dendrimers with glucosamine has been reported to give dendrimer glucosamine conjugates novel immuno-modulatory and anti-angiogenic properties. Experimental analysis of these glycosylated dendrimers showed that, on average, eight glucosamine molecules were covalently bound to each dendrimer. In order to better understand the surface loading and distribution of these glucosamine molecules, molecular reactivity was determined by evaluation of electronic properties using frontier molecular orbital theory (FMOT) and molecular dynamics simulations. It was shown that the surface loading and distribution of zero length amide bond-conjugated glucosamine molecules was determined by both electronic effects and by the different dynamic conformations adopted by the modified dendrimer during the incremental addition of glucosamine. Importantly, the structural features and the dynamic behavior of the partially glycosylated generation 3.5 PAMAM dendrimer showed that its flexibility and polarity changed with the incremental addition of glucosamine. These peripheral glucosamine molecules remained available on the dendrimer’s surface for interaction with the biological target.

Keywords

PAMAM dendrimer Anti-inflammatory FMOT Molecular dynamic simulation 

References

  1. 1.
    Shaunak S et al (2004) Nat Biotechnol 22:977–984CrossRefGoogle Scholar
  2. 2.
    Vögtle F, Richardt G, Werner N (2009) Dendrimer chemistry. Wiley, New York, pp 1–24Google Scholar
  3. 3.
    Menjoge AR, Kannan RM, Tomalia DA (2010) Drug Discov Today 15:171–185CrossRefGoogle Scholar
  4. 4.
    Barata TS et al (2010) J Mol Model in pressGoogle Scholar
  5. 5.
    Fukui K (1982) Science 218:747–754CrossRefGoogle Scholar
  6. 6.
    Fukui K (1971) Acc Chem Res 4:7–64CrossRefGoogle Scholar
  7. 7.
    Wang H et al (2005) J Org Chem 70:4910–4917CrossRefGoogle Scholar
  8. 8.
    Chen P, Solomon EI (2002) J Inorg Biochem 88:368–374CrossRefGoogle Scholar
  9. 9.
    Tada T et al (2003) J Phys Chem B 107:14204–14210CrossRefGoogle Scholar
  10. 10.
    Lee H, Baker JR, Larson RG (2006) J Phys Chem 110:4014–4019Google Scholar
  11. 11.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38CrossRefGoogle Scholar
  12. 12.
    Schrödinger Inc [cited; Available from: www.schrodinger.com
  13. 13.
    Levy RM, Gallicchio E (2003) Annu Rev Phys Chem 49:531–567CrossRefGoogle Scholar
  14. 14.
    Pedretti A, Villa L, Vistoli G (2004) J Comput Aided Mol Des 18:167–173CrossRefGoogle Scholar
  15. 15.
    Maiorov VN, Crippen GM (1994) J Mol Biol 235:625–634CrossRefGoogle Scholar
  16. 16.
    Damm KL, Carlson HA (2006) Biophys J 90:4558–4573CrossRefGoogle Scholar
  17. 17.
    Evangelos AC, Chaok S, Ken AD (2004) J Comput Chem 25:1849–1857CrossRefGoogle Scholar
  18. 18.
    Roberts BP et al (2009) Macromolecules 42:2784–2794CrossRefGoogle Scholar
  19. 19.
    von der Lieth CW, Frank M, Lindhorst TK (2002) Rev Mol Biotechnol 90:311–337CrossRefGoogle Scholar
  20. 20.
    Roberts BP et al (2009) Macromolecules 42:2775–2783CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.School of PharmacyUniversity of LondonLondonUK
  2. 2.Department of Medicine, Imperial College LondonHammersmith HospitalLondonUK

Personalised recommendations