Journal of Molecular Modeling

, Volume 17, Issue 8, pp 1911–1918 | Cite as

Probing solvation decay length in order to characterize hydrophobicity-induced bead–bead attractive interactions in polymer chains

Original Paper
  • 107 Downloads

Abstract

In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute–solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.

Keywords

Hydrophobicity Solvation Collapse 

References

  1. 1.
    Choudhury N, Pettitt BM (2005) J Am Chem Soc 127:3556–3567CrossRefGoogle Scholar
  2. 2.
    Ametov I, Prestidge CA (2004) J Phys Chem B 108:12116–12122CrossRefGoogle Scholar
  3. 3.
    Ananikian N, Ananakyan L, Artusoa R (2007) Phys Lett A 360:615–618CrossRefGoogle Scholar
  4. 4.
    Huang X, Zhou R, Berne BJ (2005) J Phys Chem B 109:3546–3552CrossRefGoogle Scholar
  5. 5.
    Goel G, Athawale MV, Garde S, Truskett TM (2008) J Phys Chem B 112:13193–13196CrossRefGoogle Scholar
  6. 6.
    Huang X, Margulis CJ, Berne BJ (2003) Proc Nat Acad Sci USA 100:11953–11958CrossRefGoogle Scholar
  7. 7.
    Zangi R, Hagen M, Berne BJ (2007) J Am Chem Soc 129:4678–4686CrossRefGoogle Scholar
  8. 8.
    Vaitheeswaran S, Thirumalai D (2006) J Am Chem Soc 128:13490–13496CrossRefGoogle Scholar
  9. 9.
    Dzubiella J, Hansen JP (2004) J Chem Phys 121:5514–5530CrossRefGoogle Scholar
  10. 10.
    Bulone D, Martorana V, San Biagio PL, Palma-Vittorelli MB (1997) Phys Rev E 56:R4939–R4942CrossRefGoogle Scholar
  11. 11.
    Bulone D, Martorana V, San Biagio PL, Palma-Vittorelli MB (1997) Phys Rev E 62:6799–6809CrossRefGoogle Scholar
  12. 12.
    Fernández A (2002) Phys Lett A 299:217–220CrossRefGoogle Scholar
  13. 13.
    Zbilut JP, Scheibel T, Huemmerich D, Webber CL Jr, Colafranceschi M, Giuliani A (2005) Phys Lett A 346:33–41CrossRefGoogle Scholar
  14. 14.
    Galashev AY, Rakhmanova OR (2008) Phys Lett A 372:3694–3698CrossRefGoogle Scholar
  15. 15.
    Silverstein KAT, Haymet ADJ, Dill KA (1998) J Am Chem Soc 120:3166–3175CrossRefGoogle Scholar
  16. 16.
    Rajamani S, Truskett TM, Garde S (2005) Proc Nat Acad Sci USA 102:9475–9480CrossRefGoogle Scholar
  17. 17.
    Qin Y, Fichthorn KA (2006) Phys Rev E 74:020401(R)(1–4)Google Scholar
  18. 18.
    Ashbaugh HS, Paulaitis ME (2001) J Am Chem Soc 123:10721–10728CrossRefGoogle Scholar
  19. 19.
    Das T, Das S, Chakraborty S (2009) J Chem Phys 130:244904(1–12)Google Scholar
  20. 20.
    Das S, Chakraborty S (2010) J Chem Phys 133:174904(1–15)Google Scholar
  21. 21.
    Montesi A, Pasquali M, Mackintosh FC (2004) Phys Rev E 69:021916(1–10)Google Scholar
  22. 22.
    Schnurr B, Mackintosh FC, Williams DRM (2000) Europhys Lett 51:279–285CrossRefGoogle Scholar
  23. 23.
    Aranson IS, Tsimring LS (2003) Europhys Lett 62:848–854CrossRefGoogle Scholar
  24. 24.
    Schnurr B, Gittes F, Mackintosh FC (2002) Phys Rev E 65:061904(1–13)Google Scholar
  25. 25.
    Lee SH, Kapral R (2006) J Chem Phys 124:214901(1–8)Google Scholar
  26. 26.
    Cooke IR, Williams DRM (2004) Macromolecules 37:5778–5783CrossRefGoogle Scholar
  27. 27.
    Sabeur SA, Hamdache F, Schmid F (2008) Phys Rev E 77:020802(R)(1–4)Google Scholar
  28. 28.
    Rapaport DC (2003) Phys Rev E 68:041801(1–11)Google Scholar
  29. 29.
    Polson JE, Moore NE (2005) J Chem Phys 122:024905(1–11)Google Scholar
  30. 30.
    Lee N, Thirumalai D (2001) Macromolecules 34:3446–3457Google Scholar
  31. 31.
    Kikuchi N, Gent A, Yeomans JM (2002) Eur Phys J E 9:63–66Google Scholar
  32. 32.
    Kikuchi N, Ryder JF, Pooley CM, Yeomans JM (2005) Phys Rev E 71:061804(1-8)Google Scholar
  33. 33.
    Pham TT, Bajaj M, Prakash JR (2008) Soft Matter 4:1196–1207CrossRefGoogle Scholar
  34. 34.
    Polson JM, Zuckermann MJ (2000) J Chem Phys 113:1283–1293CrossRefGoogle Scholar
  35. 35.
    Polson JM, Zuckermann MJ (2002) J Chem Phys 116:7244–7254CrossRefGoogle Scholar
  36. 36.
    Frisch T, Verga A (2002) Phys Rev E 66:041807(1–11)Google Scholar
  37. 37.
    Chang RW, Yethiraj A (2001) J Chem Phys 114:7688–7699CrossRefGoogle Scholar
  38. 38.
    Lum K, Chandler D, Weeks JD (1999) J Phys Chem B 103:4570–4577CrossRefGoogle Scholar
  39. 39.
    Rowlinson JS, Widom B (1982) Molecular theory of capillarity. Clarendon, OxfordGoogle Scholar
  40. 40.
    Narten AH, Levy D (1971) J Chem Phys 55:2263–2269CrossRefGoogle Scholar
  41. 41.
    Stillinger FH (1973) J Solution Chem 2:141–150CrossRefGoogle Scholar
  42. 42.
    Pratt LR, Chandler D (1977) J Chem Phys 67:3683–3704CrossRefGoogle Scholar
  43. 43.
    Hummer G, Garde S, García AE, Pohorille A, Pratt LR (1996) Proc Nat Acad Sci USA 93:8951–8955CrossRefGoogle Scholar
  44. 44.
    Pratt LR, Pohorille A (1992) Proc Nat Acad Sci USA 89:2995–2999CrossRefGoogle Scholar
  45. 45.
    Bhattacharjee S, Elimelech M, Borkovec M (1998) Croat Chem Acta 71:883–903Google Scholar
  46. 46.
    Eisenberg D, McLachan AD (1986) Nature 319:199–203CrossRefGoogle Scholar
  47. 47.
    Juffer AH, Eisenhaber F, Hubbard SJ, Walther D, Argos P (1995) Protein Sci 4:2499–2509CrossRefGoogle Scholar
  48. 48.
    Vallone B, Miele AE, Vecchini P, Chiancone E, Brunori M (1998) Proc Nat Acad Sci USA 95:6103–6107CrossRefGoogle Scholar
  49. 49.
    Sobolewski E, Makowski M, Czaplewski C, Liwo A, Oldziej S, Scheraga HA (2007) J Phys Chem B 111:10765–10774CrossRefGoogle Scholar
  50. 50.
    Makowski M, Czaplewski C, Liwo A, Scheraga HA (2010) J Phys Chem B 114:993–1003CrossRefGoogle Scholar
  51. 51.
    Southall NT, Dill KA (2002) Biophys Chem 101–102:295–307CrossRefGoogle Scholar
  52. 52.
    Chen J, Brooks CL III (2007) J Am Chem Soc 129:2444–2445CrossRefGoogle Scholar
  53. 53.
    Cheng LT, Dzubiella J, McCammon JA, Li B (2007) J Chem Phys 127:084503CrossRefGoogle Scholar
  54. 54.
    Chen J, Brooks CL III, Khandogin J (2008) Curr Opin Struct Biol 18:140–148CrossRefGoogle Scholar
  55. 55.
    Chen J, Brooks CL III (2008) Phys Chem Chem Phys 10:471–481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations