Journal of Molecular Modeling

, Volume 17, Issue 8, pp 1919–1926 | Cite as

Insights into scFv:drug binding using the molecular dynamics simulation and free energy calculation

Original paper

Abstract

Molecular dynamics simulations and free energy calculation have been performed to study how the single-chain variable fragment (scFv) binds methamphetamine (METH) and amphetamine (AMP). The structures of the scFv:METH and the scFv:AMP complexes are analyzed by examining the time-dependence of their RMSDs, by analyzing the distance between some key atoms of the selected residues, and by comparing the averaged structures with their corresponding crystallographic structures. It is observed that binding an AMP to the scFv does not cause significant changes to the binding pocket of the scFv:ligand complex. The binding free energy of scFv:AMP without introducing an extra water into the binding pocket is much stronger than scFv:METH. This is against the first of the two scenarios postulated in the experimental work of Celikel et al. (Protein Science 18, 2336 (2009)). However, adding a water to the AMP (at the position of the methyl group of METH), the binding free energy of the scFv:AMP-H2O complex, is found to be significantly weaker than scFv:METH. This is consistent with the second of the two scenarios given by Celikel et al. Decomposition of the binding energy into ligand-residue pair interactions shows that two residues (Tyr175 and Tyr177) have nearly-zero interactions with AMP in the scFv:AMP-H2O complex, whereas their interactions with METH in the scFv:METH complex are as large as -0.8 and -0.74 kcal mol-1. The insights gained from this study may be helpful in designing more potent antibodies in treating METH abuse.

Keywords

Binding free energy MM-GBSA Molecular dynamics simulation ScFv 

References

  1. 1.
    NDIC (2008) Johnstown, PA: National drug intelligence centerGoogle Scholar
  2. 2.
    Martell BA, Mitchell E, Poling J, Gonsai K, Kosten TR (2005) Biol Psychiatry 58:158–164CrossRefGoogle Scholar
  3. 3.
    Cornuz J, Zwahlen S, Jungi WF, Osterwalder J, Klingler K, van Melle G, Bangala Y, Guessous I, Muller P, Willers J, Maurer P, Bachmann MF, Cerny T (2008) PLoS ONE 3:e2547CrossRefGoogle Scholar
  4. 4.
    Peterson EC, Laurenzana EM, William T, Atchley HPH, Owens SM (2008) JPET 325:124–133CrossRefGoogle Scholar
  5. 5.
    Celikel R, Peterson EC, Owens SM, Varughese KI (2009) Protein Sci 18:2336–2345CrossRefGoogle Scholar
  6. 6.
    Wang W, Donini O, Reyes CM, Kollman PA (2001) Annu Rev Biophys Biomol Struct 30:211–243CrossRefGoogle Scholar
  7. 7.
    Essex JW, Severance DL, Tirado-Rives J, Jorgensen WL (1997) J Phys Chem B 101:9663–9669CrossRefGoogle Scholar
  8. 8.
    Roux B, Nina M, Pomès R, Smith JC (1996) Biophys J 71:670–681CrossRefGoogle Scholar
  9. 9.
    Chen LY (2008) J Chem Phys 129:144113–144117CrossRefGoogle Scholar
  10. 10.
    Chen LY, Bastien DA, Espejel HE (2010) Phys Chem Chem Phys 12:6579–6582CrossRefGoogle Scholar
  11. 11.
    Stoica I, Sadiq SK, Coveney PV (2008) J Am Chem Soc 130:2639–2648CrossRefGoogle Scholar
  12. 12.
    Hou TJ, Yu R (2007) J Med Chem 50:1177–1188CrossRefGoogle Scholar
  13. 13.
    Ode H, Matsuyama S, Hata M, Hoshino T, Kakizawa J, Sugiura W (2007) J Med Chem 50:1768–1777CrossRefGoogle Scholar
  14. 14.
    Hu GD, Zhu T, Zhang SL, Wang D, Zhang QG (2010) Eur J Med Chem 45:227–235CrossRefGoogle Scholar
  15. 15.
    Hu G, Wang D, Liu X, Zhang Q (2010) J Comput Aided Mol Des 24:687–697CrossRefGoogle Scholar
  16. 16.
    Wu EL, Han KL, Zhang JZH (2008) Chem Eur J 14:8704–8714CrossRefGoogle Scholar
  17. 17.
    Chen J, Yang M, Hu G, Shi S, Yi C, Zhang Q (2009) J Mol Model 15:1245–1252CrossRefGoogle Scholar
  18. 18.
    Onufriev A, Bashford D, Case DA (2000) J Phys Chem B 104:3712–3720CrossRefGoogle Scholar
  19. 19.
    Rafi SB, Cui G, Song K, Cheng X, Tonge PJ, Simmerling C (2006) J Med Chem 49:4574–4580CrossRefGoogle Scholar
  20. 20.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (2002) J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc, Wallingford, CTGoogle Scholar
  22. 22.
    Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) J Comput Chem 16:1357–1377CrossRefGoogle Scholar
  23. 23.
    Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  24. 24.
    Wang W, Kollman PA (2000) J Mol Biol 303:567–582CrossRefGoogle Scholar
  25. 25.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  26. 26.
    Case DA, Darden TA, Cheatham TEIII, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) University of California, San FranciscoGoogle Scholar
  27. 27.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341CrossRefGoogle Scholar
  28. 28.
    Weber PC, Pantoliano MW, Simons DM, Salemme FR (1994) J Am Chem Soc 116:2717–2724CrossRefGoogle Scholar
  29. 29.
    Chen JM, Xu SL, Wawrzak Z, Basarab GS, Jordan DB (1998) Biochemistry 37:17735–17744CrossRefGoogle Scholar
  30. 30.
    Clarke C, Woods RJ, Gluska J, Cooper A, Nutley MA, Boons GJ (2001) J Am Chem Soc 123:12238–12247CrossRefGoogle Scholar
  31. 31.
    Scott DS, Katherine AE, Michael AG, Milos VN, Martin JS (2005) Protein Sci 14:249–256Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Texas at San AntonioSan AntonioUSA
  2. 2.College of Physics and ElectronicsShandong Normal UniversityJinanChina

Personalised recommendations