Journal of Molecular Modeling

, Volume 17, Issue 7, pp 1767–1780 | Cite as

A versatile approach for modeling and simulating the tacticity of polymers

  • Massoud J. Miri
  • Benjamin P. Pritchard
  • H. N. Cheng
Original Paper

Abstract

We are introducing a versatile computerized approach to model and simulate polymer tacticities using seven single-stage statistical models. The theory behind the models, e.g., Bovey’s versus Price’s, Bernoullian, 1st or 2nd order Markovian, enantiomeric types, and combinations thereof is explained. One of the models, "E-B gen", which can be used to produce four types of enantiomorphically controlled tacticities, and the pentad distribution for the model "E-M1" are reported here for the first time. The relations of chain-end controlled models to binary copolymerizations are discussed in detail, and equations for the conversion of tacticity based probabilities to reactivity ratios to obtain related n-ad distributions are presented. The models were applied to 20 polymers with exemplary tacticities found in the literature. A related software program (“Polytact”) based on Microsoft’s Excel has been designed to calculate all relevant characteristics of the polymer tacticity and to present them in graphical form in a user-friendly manner. The program can be used to produce graphs of the triad, pentad and sequence length distributions and a simulation of 50 monomer repeat units in the polymer for each of the seven models. One of the main intended uses of the program is to compare the computed n-ad distributions to those of experimental polymers obtained from NMR spectroscopy and to gain insight into the polymerization mechanisms.

Figure

Enantiomorphic General (E-B Gen) 

Keywords

Computer modeling Pentads Single-site catalysts Stereospecific polymerization Tacticity 

Supplementary material

894_2010_880_MOESM1_ESM.doc (2 mb)
ESM 1(DOC 2.00 MB)

References

  1. 1.
    Bovey FA (1982) Chain structure and conformation of macromolecules. Academic, New YorkGoogle Scholar
  2. 2.
    Bovey FA, Tiers G (1960) Polymer NSR spectroscopy. II. The high resolution spectra of methyl methacrylate polymers prepared with free radical and anionic initiators. J Polym Sci 44:173–182CrossRefGoogle Scholar
  3. 3.
    Frisch HL, Mallows CL, Bovey FA (1966) On the stereoregularity of vinyl polymer chains. J Chem Phys 45:1565–1577CrossRefGoogle Scholar
  4. 4.
    Price FP (1970) Markov Chains and Monte Carlo calculations. In: Lowry GG (ed) Polymer science. Marcel Dekker, New York, Chapter 7Google Scholar
  5. 5.
    Price FP (1962) Copolymerization mathematics and the description of stereoregular polymers. J Chem Phys 36:209–218CrossRefGoogle Scholar
  6. 6.
    Miller RL, Nielsen LE (1960) On the characterization of stereoregular polymers I. theory. J Polym Sci 46:303–316CrossRefGoogle Scholar
  7. 7.
    Coleman BD, Fox TG (1963) Multistate mechanism of homogeneous ionic polymerization I. The diastereosequence distribution. J Polym Sci A 1:3183–3197Google Scholar
  8. 8.
    Shelden R, Fueno T, Furukawa J (1969) Statistical models in the study of stereospecific polymerization. J Polym Sci, A-2 Polym Phys 7:763–773CrossRefGoogle Scholar
  9. 9.
    Koenig JL (1980) Chemical structure of polymer chains. Wiley, New YorkGoogle Scholar
  10. 10.
    Symmetric Elias HG (1982) Markov trials. Syndiotactic poly(propylene) and heterotactic polymers. Makromol Chem 183:1555–1564CrossRefGoogle Scholar
  11. 11.
    Farina M (1987) The stereochemistry of linear macromolecules. In: Eliel EL, Wilen SH (eds) Topics in stereochemistry. John Wiley & Sons, New York, pp 1–100CrossRefGoogle Scholar
  12. 12.
    Cheng HN (1987) Computerized model fitting approach for the nmr analysis of polymers. J Chem Inf Comput Sci 27:8–13Google Scholar
  13. 13.
    Cheng HN (1988) Stereochemistry of vinyl polymers and NMR characterization. J Appl Polym Sci 36:229–241CrossRefGoogle Scholar
  14. 14.
    Cheng HN (1988) Statistical modeling and NMR analysis of polyolefins. In: Quirk RP (ed) Transition metal catalyzed polymerizations: Ziegler-Natta and Metathesis polymerizations, 2nd edn. Cambridge University Press, Cambridge, pp 599–623Google Scholar
  15. 15.
    Cheng HN (1993) Statistical propagation models for Ziegler-Natta polymerization. In: Chung TC (ed) New advances in polyolefins. Plenum, New York and London, pp 15–30Google Scholar
  16. 16.
    Cheng HN (2001) Structural studies of polymers by solution NMR; Rapra Review Reports, vol 11 no 5 report 125Google Scholar
  17. 17.
    van der Burg MW, Chadwick JC, Sudmeijer O, Tulleken HFA (1993) Probalistic multi-site modelling of propene polymerization using Markov models. Makromol Chem Theory Simul 2:399–420CrossRefGoogle Scholar
  18. 18.
    Farina M, DiSilvestro G, Sozzani P (1993) Hemiisotactic polypropylene: a key point in the elucidation of the polymerization mechanism with metallocene catalysts. Macromolecules 26:946–950CrossRefGoogle Scholar
  19. 19.
    Ewen JA (1984) Mechanisms of stereochemical control in propylene polymerizations with soluble group 4B metallocene/methylalumoxane catalysts. J Am Chem Soc 106:6355–6364CrossRefGoogle Scholar
  20. 20.
    Ewen JA (1998) Symmetry rules and reaction mechanisms of Ziegler-Natta catalysts. J Mol Catal, A Chem 128:103–109CrossRefGoogle Scholar
  21. 21.
    Ewen JA, Elder MJ, Jones RL, Curtis S, Cheng HN (1990) Syndiospecific propylene polymerization with iPr[CpFlu]ZrCl2. Stud Surf Sci Catal 56:439–482CrossRefGoogle Scholar
  22. 22.
    Bruce MD, Waymouth RM (1998) Statistical analysis and simulation of pentad distributions of stereoblock polypropylenes. Macromolecules 31:2707–2715CrossRefGoogle Scholar
  23. 23.
    Resconi L, Cavallo L, Fait A, Piemontesi F (2000) Selectivity in propene polymerization with metallocene catalysts. Chem Rev 100:1253–1345CrossRefGoogle Scholar
  24. 24.
    Coates GW (2000) Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem Rev 100:1223–1252CrossRefGoogle Scholar
  25. 25.
    Miller SA, Bercaw JE (2002) Isotactic-hemiisotactic polypropylene from C 1-symmetric ansa-metallocene catalysts: a new strategy for the synthesis of elastomeric polypropylene. Organometallics 21:934–945CrossRefGoogle Scholar
  26. 26.
    Miller S (2004) Isotactic block length distribution in polypropylene: bernoullian vs hemiisotactic. Macromolecules 37:3983–3995CrossRefGoogle Scholar
  27. 27.
    Madkour TM, Mark JE (2002) Mescoscopic modelling of the polymerization, morphology, and crystallization of stereblock and stereregular polypropylenes. J Polym Sci, B, Polym Phys 40:840–853CrossRefGoogle Scholar
  28. 28.
    Kaminsky W (2000) Metallocene catalyzed polymerization; Rapra Review Reports, vol 10 no 7 report 115 Google Scholar
  29. 29.
    Cheng HN, Lee GH (1996) NMR studies of polystyrene tacticity. Int J Polym Anal Charact 2:439–455CrossRefGoogle Scholar
  30. 30.
    Tomotsu N, Ishihara N, Newman TH, Malanga MT (1998) Syndiospecific polymerization of styrene. J Mol Catal, A Chem 128:167–190CrossRefGoogle Scholar
  31. 31.
    Coates GW, Waymouth RM (1995) Oscillating stereocontrol: a strategy for the synthesis of thermoplastic elastomeric polypropylene. Science 267:217–219CrossRefGoogle Scholar
  32. 32.
    Nele M, Collins S, Dias ML, Pinto JC, Lin S, Waymouth RM (2000) Two-state models for olefin polymerization using metallocene catalysts. 1. Application to fluxional metallocene catalyst systems. Macromolecules 33:7249–7260CrossRefGoogle Scholar
  33. 33.
    Busico V, Cipullo R, Monaco G, Talarico G, Vacatello M, Chadwick JC, Segre AL, Sudmeijer O (1999) High-resolution 13C NMR configurational analysis of polypropylene made with MgCl2-supported Ziegler—Natta catalysts. 1. The “model” system MgCl2/TiCl4–2, 6-dimethylpyridine/Al(C2H5)3. Macromolecules 32:4173–4182CrossRefGoogle Scholar
  34. 34.
    Cheng HN, Kasehagen LJ (1993) Tacticity distribution and simulation. Macromolecules 26:4774–4782CrossRefGoogle Scholar
  35. 35.
    Randall JC (1976) Carbo-13 nuclear magnetic resonance quantitative measurements of average sequence lengths of like stereochemical additions in polypropylene and polystyrene. J Polym Sci, Polym Phys Ed 14:2083CrossRefGoogle Scholar
  36. 36.
    Miri M, Morales-Tirado J (2003) Copoly: a tool for understanding copolymerization and monomer sequence distribution of copolymers. J Chem Educ 80:838Google Scholar
  37. 37.
    Martuscelli E, Avella M, Segre AL, Rossi E, Di Drusco G, Galli P, Simonazzi T (1985) Stereochemical composition-properties relationships in isotactic polypropylenes obtained with different catalyst systems. Polymer 26:259–269CrossRefGoogle Scholar
  38. 38.
    Brinztinger HH, Fischer D, Mulhaupt R, Rieger B, Waymouth RM (1995) Stereospecific olefin polymerization with chiral metallocene catalysts. Angew Chem Int Ed Engl 34:1143–1170CrossRefGoogle Scholar
  39. 39.
    Wilson SE, Job RC (1990) Catalyst component for making primarily isotactic elastomeric polypropylene or polybutene. U.S. Patent 4971936Google Scholar
  40. 40.
    Fullana MJ, Miri MJ, Vadhavkar SS, Kolhatkar N, Delis AC (2008) Polymerization of methyl acrylate and as comonomer with ethylene using a Bis(imino)pyridine iron(II) chloride/methylaluminoxane catalyst. J Polym Sci, A, Polym Chem 46:5542–5558CrossRefGoogle Scholar
  41. 41.
    Hatada K, Kitayama T (1996) Stereospecific living polymerization of methacrylate and construction of stereoregular polymer architecture. In: Hatada K, Kitayama T, Vogl O (eds) Macromolecular design of polymeric materials. CRC, Chichester, pp 139–163Google Scholar
  42. 42.
    Ishihara N, Seimiya T, Kuramoto M, Uoi M (1986) Crystalline syndiotactic polystyrene. Macromolecules 19:2464–2465CrossRefGoogle Scholar
  43. 43.
    Ishihara N, Kuramoto M, Uoi M (1988) Stereospecific polymerization of styrene giving the syndiotactic polymer. Macromolecules 21:3356–3360CrossRefGoogle Scholar
  44. 44.
    Ewen JA, Jones RL, Razavi A, Ferrara JD (1988) Syndiospecific propylene polymerizations with group IVB metallocenes. J Am Chem Soc 110:6255–6256CrossRefGoogle Scholar
  45. 45.
    Ewen JA, Elder MJ, Harlan CJ, Jones RL, Atwood JL, Bott SG, Robinson K (1991) π-face selectivity in syndiospecific propylene polymerizations with Zr(IV) monoalkyl cation. Polym Prepr (ACS) 32:469–470Google Scholar
  46. 46.
    Kaminsky W (2001) Olefin polymerization catalyzed by metallocenes. Adv Catal 46:89–159CrossRefGoogle Scholar
  47. 47.
    Leino R, Gomez FJ, Cole AP, Waymouth RM (2001) Syndiospecific propylene polymerization with C 1 symmetric group 4 ansa-metallocene catalysts. Macromolecules 34:2072–2082CrossRefGoogle Scholar
  48. 48.
    Small BL, Brookhart M (1999) Polymerization of propylene by a new generation of iron catalysts: mechanisms of chain initiation, propagation, and termination. Macromolecules 32:2120–2130CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2010

Authors and Affiliations

  • Massoud J. Miri
    • 1
  • Benjamin P. Pritchard
    • 1
  • H. N. Cheng
    • 2
  1. 1.Department of ChemistryRochester Institute of TechnologyRochesterUSA
  2. 2.Southern Regional Research CenterUSDA Agricultural Research ServiceNew OrleansUSA

Personalised recommendations