Journal of Molecular Modeling

, Volume 17, Issue 9, pp 2183–2189 | Cite as

Third-order nonlinear optical materials: practical issues and theoretical challenges

Original Paper

Abstract

The renewed interest in all-optical switching has led to more detailed experimental investigations of nonlinear optical properties of materials within wide wavelength ranges. The objectives of these studies are discussed here in the context of the availability of suitable computational data that might be compared with the results of the experimental research. It is concluded that the currently available data are insufficient and should be augmented to provide better guidance for experimental work.

Keywords

All-optical switching Cubic hyperpolarizability Nonlinear refraction Third-order optical nonlinearity 

Notes

Acknowledgments

This work has been performed within a project "Organometallics for Nanophotonics" funded under the Foundation for Polish Science Welcome programme.

References

  1. 1.
    Hales JM, Zheng S, Barlow S, Marder SR, Perry JW (2006) Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing. J Am Chem Soc 128:11362–11363CrossRefGoogle Scholar
  2. 2.
    Hales JM, Matichak J, Barlow S, Ohira S, Yesudas K, Bredas JL, Perry JW, Marder SR (2010) Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit. Science 327:1485–1488CrossRefGoogle Scholar
  3. 3.
    He GS, Tan LS, Zheng Q, Prasad PN (2008) Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem Rev 108:1245–1330CrossRefGoogle Scholar
  4. 4.
    Christodoulides DN, Khoo IC, Salamo GJ, Stegeman GI, van Stryland EW (2010) Nonlinear refraction and absorption: Mechanisms and magnitudes. Adv Opt Photon 2:60–200CrossRefGoogle Scholar
  5. 5.
    Jensen SM (1982) The non-linear coherent coupler. IEEE J Quantum Electron 18:1580–1583CrossRefGoogle Scholar
  6. 6.
    Mizrahi V, Delong KW, Stegeman GI, Saifi MA, Andrejco MJ (1989) 2-photon absorption as a limitation to all-optical switching. Opt Lett 14:1140–1142CrossRefGoogle Scholar
  7. 7.
    Stegeman GI, Torruellas WE (1996) Nonlinear materials for information processing and communications. Philos Trans R Soc Lond Phys Sci Eng:745-756Google Scholar
  8. 8.
    Milam D (1998) Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. Appl Opt 37:546–550CrossRefGoogle Scholar
  9. 9.
    Zakery A, Ruan Y, Rode AV, Samoc M, Luther-Davies B (2003) Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films. J Opt Soc Am B: Opt Phys 20:1844–1852CrossRefGoogle Scholar
  10. 10.
    Ta'eed VG, Baker NJ, Fu LB, Finsterbusch K, Lamont MRE, Moss DJ, Nguyen HC, Eggleton BJ, Choi DY, Madden S, Luther-Davies B (2007) Ultrafast all-optical chalcogenide glass photonic circuits. Opt Expr 15:9205–9221CrossRefGoogle Scholar
  11. 11.
    Gabler T, Brauer A, Waldhausl R, Bartuch U, Horhold HH, Michelotti F (1998) Nonresonant n2 and TPA coefficient measurement in polymer waveguides by different measurement techniques. Pure Appl Opt 7:159–168CrossRefGoogle Scholar
  12. 12.
    Samoc A, Samoc M, Woodruff M, Luther-Davies B (1995) Tuning the properties of poly(p-phenylenevinylene) for use in all-optical switching. Opt Lett 20:1241–1243CrossRefGoogle Scholar
  13. 13.
    Samoc A, Samoc M, Woodruff M, Luther-Davies B (1998) Poly(p- phenylenevinylene ): An attractive material for photonic applications. In: Wise DL, Wnek GE, Trantolo DJ, Cooper TM, Gresser JD (eds) Photonic polymer systems: Fundamentals, methods and applications, vol 49, Plastics engineering. Marcel Dekker Inc, New York, Basel, Hong Kong, pp 373–436Google Scholar
  14. 14.
    Sheikh-bahae M, Said AA, Wei T, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearites using a single beam. IEEE J Quantum Electr 26:760–769CrossRefGoogle Scholar
  15. 15.
    Samoc M, Samoc A, Luther-Davies B, Bao Z, Yu L, Hsieh B, Scherf U (1998) Femtosecond z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order nonlinearity of soluble conjugated polymers. J Opt Soc Am B: Opt Phys 15:817–825CrossRefGoogle Scholar
  16. 16.
    Kamada K, Matsunaga K, Yoshino A, Ohta K (2003) Two-photon-absorption-induced accumulated thermal effect on femtosecond Z-scan experiments studied with time-resolved thermal-lens spectrometry and its simulation. J Opt Soc Am B: Opt Phys 20:529–537CrossRefGoogle Scholar
  17. 17.
    Samoc M, Samoc A, Luther-Davies B, Humphrey MG, Wong M-S (2003) Third-order optical nonlinearities of oligomers, dendrimers and polymers derived from solution Z-scan studies. Opt Mat 21:485–488CrossRefGoogle Scholar
  18. 18.
    Powell CE, Morrall JP, Ward SA, Cifuentes MP, Notaras EGA, Samoc M, Humphrey MG (2004) Dispersion of the third-order nonlinear optical properties of an organometallic dendrimer. J Am Chem Soc 126:12234–12235CrossRefGoogle Scholar
  19. 19.
    Samoc M, Dalton GT, Gladysz JA, Zheng Q, Velkov Y, Aagren H, Norman P, Humphrey MG (2008) Cubic nonlinear optical properties of platinum-terminated polyynediyl chains. Inorg Chem 47:9946–9957CrossRefGoogle Scholar
  20. 20.
    Dalton GT, Cifuentes MP, Watson LA, Petrie S, Stranger R, Samoc M, Humphrey MG (2009) Organometallic complexes for nonlinear optics. 42. Syntheses, linear, and nonlinear optical properties of ligated metal-functionalized oligo(p-phenyleneethynylene)s. Inorg Chem 48:6534–6547CrossRefGoogle Scholar
  21. 21.
    Babgi B, Rigamonti L, Cifuentes MP, Corkery TC, Randles MD, Schwich T, Petrie S, Stranger R, Teshome A, Asselberghs I, Clays K, Samoc M, Humphrey MG (2009) Length-dependent convergence and saturation behavior of electrochemical, linear optical, quadratic nonlinear optical, and cubic nonlinear optical properties of dipolar alkynylruthenium complexes with oligo(phenyleneethynylene) bridges. J Am Chem Soc 131:10293–10307CrossRefGoogle Scholar
  22. 22.
    Roberts RL, Schwich T, Corkery TC, Cifuentes MP, Green KA, Farmer JD, Low PJ, Marder TB, Samoc M, Humphrey MG (2009) Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers. Adv Mat 21:2318CrossRefGoogle Scholar
  23. 23.
    Samoc M, Samoc A, Grote JG (2006) Complex nonlinear refractive index of DNA. Chem Phys Lett 431:132–134CrossRefGoogle Scholar
  24. 24.
    Sheik-Bahae M (2005) Nonlinear optics basics. Kramers-Kronig relations in nonlinear optics. In: Guenther RD (ed) Encyclopedia of modern optics. Academic Press, AmsterdamGoogle Scholar
  25. 25.
    Samoc M, Samoc A, Dalton GT, Cifuentes MP, Humphrey MG, Fleitz PA (2008) Dispersion of the complex cubic nonlinearity in two-photon absorbing organic and organometallic chromophores. Proc SPIE-Int Soc Opt Eng 6801:68011O-68011-68016Google Scholar
  26. 26.
    Samoc M, Samoc A, Humphrey MG, Cifuentes MP, Luther-Davies B, Fleitz PA (2008) Z-scan studies of dispersion of the complex third-order nonlinearity of nonlinear absorbing chromophores. Mol Cryst Liq Cryst 485:894–902CrossRefGoogle Scholar
  27. 27.
    Orr BJ, Ward JF (1971) Perturbation theory of non-linear optical polarization of an isolated system. Mol Phys 20:513-&Google Scholar
  28. 28.
    Pang Y, Samoc M, Prasad PN (1991) Third-order nonlinearity and two-photon-induced molecular dynamics: Femtosecond time-resolved transient absorption, Kerr gate and degenerate four-wave mixing studies in poly(p-phenylenevinylene)/sol-gel silica film. J Chem Phys 94:5282–5290CrossRefGoogle Scholar
  29. 29.
    Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B: Opt Phys 13:481–491CrossRefGoogle Scholar
  30. 30.
    Makarov NS, Drobizhev M, Rebane A (2008) Two-photon absorption standards in the 550–1600 nm excitation wavelength range. Opt Expr 16:4029–4047CrossRefGoogle Scholar
  31. 31.
    Hutchings DC, Sheik-bahae M, Hagan DJ, Van Stryland EW (1992) Kramers-Kronig relations in nonlinear optics. Opt Quant Electr 24:1–30CrossRefGoogle Scholar
  32. 32.
    Lucarini V, Saarinen JJ, Peiponen KE (2003) Multiply subtractive Kramers-Kronig relations for arbitrary-order harmonic generation susceptibilities. Opt Commun 218:409–414CrossRefGoogle Scholar
  33. 33.
    Peiponen KE, Lucarini V, Saarinen JJ, Vartiainen E (2004) Kramers-Kronig relations and sum rules in nonlinear optical spectroscopy. Appl Spectrosc 58:499–509CrossRefGoogle Scholar
  34. 34.
    Boyd RW (2008) Nonlinear optics, 3rd edn. Academic, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Physical and Theoretical ChemistryWroclaw University of TechnologyWroclawPoland

Personalised recommendations