Journal of Molecular Modeling

, Volume 17, Issue 9, pp 2151–2157 | Cite as

Molecular surface electrostatic potentials as guides to Si-O-N angle contraction: tunable σ-holes

  • Jane S. Murray
  • Monica C. Concha
  • Peter Politzer
Original Paper

Abstract

We have demonstrated that the variation in the experimentally-determined Si-O-N angles in XYZSi-O-N(CH3)2 molecules, which depends upon the positions and natures of the substituents X, Y and Z, can be explained in terms of computed electrostatic potentials on the molecular surfaces of the corresponding XYZSi-H molecules. The latter framework has been used as a model for what the nitrogen lone pair in the XYZSi-O-N(CH3)2 molecules sees. Both optimized geometries and electrostatic potentials of our model XYZSi-H systems have been obtained at the B3PW91/6-31G(d,p) level. We propose that the driving force for the observed Si-O-N angle contraction in XYZSi-O-N(CH3)2 molecules is largely the electrostatic attraction between a positive σ-hole on the silicon and the lone pair of the nitrogen. Negative regions that may be near the silicon σ-hole, arising from substituents with negative potentials, also play an important role, as they impede the approach of the nitrogen lone pair. These two factors work in synergy and attest to the electrostatically-driven nature of the Si---N intramolecular interactions, highlighting their tunability.

Keywords

Electrostatic potentials Intramolecular interactions Si-O-N angles σ-hole interactions Tunability 

Notes

Acknowledgments

We thank Professor Andrzej Sokalski and Mrs. Grazyna Sokalska for their help and support in July 2010 in Wroclaw, Poland, without which we would not be submitting this paper.

References

  1. 1.
    Mitzel NW, Blake AJ, Rankin DWH (1997) J Am Chem Soc 119:4143–4148CrossRefGoogle Scholar
  2. 2.
    Mitzel NW, Losehand U (1997) Angew Chem Int Ed Engl 36:2807–4148CrossRefGoogle Scholar
  3. 3.
    Mitzel NW, Losehand U (1998) J Am Chem Soc 120:7320–7327CrossRefGoogle Scholar
  4. 4.
    Losehand U, Mitzel NW, Rankin DWH (1999) J Chem Soc Dalton Trans 4291-4297Google Scholar
  5. 5.
    Mitzel NW, Losehand U, Wu A, Cremer D, Rankin DWH (2000) J Am Chem Soc 122:4471–4482CrossRefGoogle Scholar
  6. 6.
    Vojinovic K, Mitzel NW, Foerster T, Rankin DWH (2004) Z Naturforsch 59b:1505–1511Google Scholar
  7. 7.
    Mitzel NW, Vojinovic K, Froehlich R, Foerster T, Robertson HE, Borisenko KB, Rankin DWH (2005) J Am Chem Soc 127:13705–13713CrossRefGoogle Scholar
  8. 8.
    Blake AJ, Dyrbush M, Ebsworth EAV, Henderson SGD (1988) Acta Crystallogr C 44:1–3CrossRefGoogle Scholar
  9. 9.
    Kostyanovskii RG, Prokov’ev AK (1965) Dokl Akad Nauk SSSR 164:1054–1057Google Scholar
  10. 10.
    Feshin VP, Voronkov MG (1982) J Mol Struct 83:317–320CrossRefGoogle Scholar
  11. 11.
    Hagemann M, Mix A, Berger RJF, Pape T, Mitzel NW (2008) Inorg Chem 47:10554–10564CrossRefGoogle Scholar
  12. 12.
    Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729CrossRefGoogle Scholar
  13. 13.
    Politzer P, Murray JS, Lane P, Concha MC (2009) Int J Quantum Chem 109:3773–3780CrossRefGoogle Scholar
  14. 14.
    Murray JS, Lane P, Nieder A, Klapötke TM, Politzer P (2010) Theor Chem Acc. doi: 10.1007/s00214-009-0723-9 Google Scholar
  15. 15.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  16. 16.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:313–318CrossRefGoogle Scholar
  17. 17.
    Politzer P, Concha MC, Murray JS (2007) J Mol Model 13:643–650CrossRefGoogle Scholar
  18. 18.
    Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) J Chem Theory Comput 5:155–163CrossRefGoogle Scholar
  19. 19.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  20. 20.
    Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038CrossRefGoogle Scholar
  21. 21.
    Murray JS, Lane P, Politzer (2007) Int J Quantum Chem 107:2286-2292Google Scholar
  22. 22.
    Clark T, Murray JS, Lane P, Politzer P (2008) J Mol Model 14:689–697CrossRefGoogle Scholar
  23. 23.
    Murray JS, Lane P, Politzer P (2008) Int J Quantum Chem 108:2270–2781CrossRefGoogle Scholar
  24. 24.
    Shields ZP, Murray JS, Politzer P (2010) Int J Quantum Chem. doi: 10.1002/qua.22787 Google Scholar
  25. 25.
    Politzer P, Murray JS (2009) In: Leszczynski J, Shukla M (eds) Practical aspects of computational chemistry. Springer, Heidelberg, pp 149–163CrossRefGoogle Scholar
  26. 26.
    Scrocco E, Tomasi J (1978) Adv Quantum Chem 11:115–193CrossRefGoogle Scholar
  27. 27.
    Stewart RF (1979) Chem Phys Lett 65:335–342CrossRefGoogle Scholar
  28. 28.
    Politzer P, Truhlar DG, (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkGoogle Scholar
  29. 29.
    Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665CrossRefGoogle Scholar
  30. 30.
    Murray JS, Politzer P (2010) Wiley Interdisciplinary Reviews, in pressGoogle Scholar
  31. 31.
    Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16(11):1679–1691CrossRefGoogle Scholar
  32. 32.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  33. 33.
    Hagelin H, Brinck T, Berthelot M, Murray JS, Politzer P (1995) Can J Chem 73:483–488CrossRefGoogle Scholar
  34. 34.
    Murray JS, Politzer P (1998) J Mol Struct Theochem 425:107–114CrossRefGoogle Scholar
  35. 35.
    Politzer P, Concha MC, Murray JS (2000) Int J Quantum Chem 80:184–192CrossRefGoogle Scholar
  36. 36.
    Hussein W, Walker CG, Peralta-Inga Z, Murray JS (2001) Int J Quantum Chem 82:160–169CrossRefGoogle Scholar
  37. 37.
    O’Hair RAJ, Williams CM, Clark T (2010) J Mol Model 16:559–565CrossRefGoogle Scholar
  38. 38.
    Frisch MJ et al. (2009) Gaussian 09, Revision A1. Gaussian Inc, Wallingford, CTGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jane S. Murray
    • 1
  • Monica C. Concha
    • 2
  • Peter Politzer
    • 1
  1. 1.CleveTheoComp LLCClevelandUSA
  2. 2.Department of ChemistryUniversity of New OrleansNew OrleansUSA

Personalised recommendations