Advertisement

Journal of Molecular Modeling

, Volume 17, Issue 5, pp 921–928 | Cite as

Molecular modeling and QSAR studies of a set of indole and benzimidazole derivatives as H4 receptor antagonists

  • João Paulo S. FernandesEmail author
  • Kerly Fernanda M. Pasqualoto
  • Elizabeth I. Ferreira
  • Carlos A. Brandt
Original Paper

Abstract

Histamine is an important biogenic amine, which acts with a group of four G-protein coupled receptors (GPCRs), namely H1 to H4 (H1R – H4R) receptors. The actions of histamine at H4R are related to immunological and inflammatory processes, particularly in pathophysiology of asthma, and H4R ligands having antagonistic properties could be helpful as antiinflammatory agents. In this work, molecular modeling and QSAR studies of a set of 30 compounds, indole and benzimidazole derivatives, as H4R antagonists were performed. The QSAR models were built and optimized using a genetic algorithm function and partial least squares regression (WOLF 5.5 program). The best QSAR model constructed with training set (N = 25) presented the following statistical measures: r 2 = 0.76, q 2 = 0.62, LOF = 0.15, and LSE = 0.07, and was validated using the LNO and y-randomization techniques. Four of five compounds of test set were well predicted by the selected QSAR model, which presented an external prediction power of 80%. These findings can be quite useful to aid the designing of new anti-H4 compounds with improved biological response.

Keywords

Antiinflammatory agents Asthma H4 receptor antagonists Molecular modeling QSAR Rational drug design 

References

  1. 1.
    Nelson WL (2002) Antihistamines and related antiallergic and antiulcer agents. In: Williams DA, Lemke TL (eds) Foye’s Principles of Medicinal Chemistry, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 794–818Google Scholar
  2. 2.
    Parsons ME, Ganellin CR (2006) Histamine and its receptors. Br J Pharmacol 147:S127–S135CrossRefGoogle Scholar
  3. 3.
    Moessner J, Caca K (2005) Developments in the inhibition of gastric acid secretion. Eur J Clin Invest 35:469–475CrossRefGoogle Scholar
  4. 4.
    Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130CrossRefGoogle Scholar
  5. 5.
    Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and H4 receptors in allergic inflammation: The search for new antihistamines. Nat Rev Drug Discov 7:41–53CrossRefGoogle Scholar
  6. 6.
    Oda T, Morikawa N, Saito Y et al. (2000) Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J Biol Chem 275:36781–36786CrossRefGoogle Scholar
  7. 7.
    Jórjárt B, Kiss R, Viskolcz B et al. (2008) Activation mechanism of the human histamine H4 receptor – an explicit membrane molecular dynamics simulation study. J Chem Inf Model 48:1199–1210CrossRefGoogle Scholar
  8. 8.
    Kiss R, Noszál B, Rácz A et al. (2008) Binding mode analysis and enrichment studies on homology models of the human histamine H4 receptor. Eur J Med Chem 43:1059–1070CrossRefGoogle Scholar
  9. 9.
    Carruthers NI, Dvorak CA, Edwards JP et al. (2004) Preparation of nitrogen containing heterocyclic compounds as compounds useful for in the treatment of histamine H4 mediated diseases. PCT Int Appl 70pp, WO 2004022060Google Scholar
  10. 10.
    Jablonowski JA, Grice CA, Chai W et al. (2003) The first potent and selective non-imidazole human histamine H4 receptor antagonists. J Med Chem 46:3957–3960CrossRefGoogle Scholar
  11. 11.
    Terzioglu N, Van Rijn RM, Bakker RA et al. (2004) Synthesis and structure-activity relationships of indole and benzimidazole piperazines as histamine H4 receptor antagonists. Bioorg Med Chem Lett 14:5251–5256CrossRefGoogle Scholar
  12. 12.
    Venable JD, Cai H, Chai W et al. (2005) Preparation and biological evaluation of indole, benzimidazole and thienopyrrole piperazine carboxamides: potent human histamine H4 antagonists. J Med Chem 48:8289–8298CrossRefGoogle Scholar
  13. 13.
    Brown RD, Martin YC (1996) Use of structure − activity data to compare structure-based clustering methods and descriptors for use in compound selection. J Chem Inf Comput Sci 36:572–584Google Scholar
  14. 14.
    HyperChem Program Release 7.51 for Windows (2002) Hybercube Inc, Gainesville, FLGoogle Scholar
  15. 15.
    Wright SW, Rath VL, Genereux PE et al. (2005) 5-Chloroindoloyl glycine amide inhibitors of glycogen phosphorylase: synthesis, in vitro, in vivo, and X-ray crystallographic characterization. Bioorg Med Chem Lett 15:459–465CrossRefGoogle Scholar
  16. 16.
    Cronin NB, Badasso MO, Tickle IJ et al. (2000) X-ray structures of five renin inhibitors bound to saccharopepsin: exploration of active-site specificity. J Mol Biol 303:745–760CrossRefGoogle Scholar
  17. 17.
    Dewar MJS, Zoebisch EG, Healy EF et al. (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  18. 18.
    Gaussian 03W, version 6.0, revision A.1 (2003) Gaussian Inc, Pittsburgh, PAGoogle Scholar
  19. 19.
    MarvinBeans version 5.1.5 (2009) ChemAxon, Ltd, Budapest, HUNGoogle Scholar
  20. 20.
    Viswanadhan VN, Ghose AK, Revankar GR et al. (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29:163–172Google Scholar
  21. 21.
    Klopman G, Li J, Wang S (1994) Computer automated logP calculations based on an extended group contribution approach. J Chem Inf Comput Sci 34:752–781Google Scholar
  22. 22.
    Csizmadia F, Tsantili-Kakoulidou A, Panderi I et al. (1997) Prediction of distribution coefficient from structure. 1. Estimation method. J Pharm Sci 86:865–871CrossRefGoogle Scholar
  23. 23.
    Miller KJ (1990) Additivity methods in molecular polarizability. J Am Chem Soc 112:8533–8542CrossRefGoogle Scholar
  24. 24.
    Bodor N, Gabanyi Z, Wong CK (1989) A new method for the estimation of partition coefficient. J Am Chem Soc 111:3783–3786CrossRefGoogle Scholar
  25. 25.
    Szegezdi J, Csizmadia F (2007) A method for calculating the pKa values of small and large molecules. ACS Spring Meeting, March 25-29thGoogle Scholar
  26. 26.
    Platt JR (1947) Influence od neighbor bonds on additive bond properties in paraffins. J Chem Phys 15:419–420CrossRefGoogle Scholar
  27. 27.
    Randič M (1975) Characterization of molecular branching. J Am Chem Soc 97:6609–6615CrossRefGoogle Scholar
  28. 28.
    Balaban AT (1982) Distance connectivity index. Chem Phys Lett 89:399–404CrossRefGoogle Scholar
  29. 29.
    Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20CrossRefGoogle Scholar
  30. 30.
    Cao C, Liu L (2004) Topological steric effect index and its application. J Chem Inf Comput Sci 44:678–687Google Scholar
  31. 31.
    Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials the need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373CrossRefGoogle Scholar
  32. 32.
    Glen WG, Dunn WJ, Scott DR (1989) Principal components analysis and partial least-squares regression. Tetrahedron Comput Methodol 2:349–354CrossRefGoogle Scholar
  33. 33.
    Rogers D, Hopfinger AJ (1994) Applications of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci 34:854–866Google Scholar
  34. 34.
    Rogers D (1994) WOLF Reference Manual Version 5.5. The Chem21 Group Inc, Chicago, ILGoogle Scholar
  35. 35.
    Shi LM, Fan Y, Myers TG et al. (1998) Mining the NCI anticancer drug discovery databases: genetic function approximation for the QSAR study of anticancer ellipticine analogues. J Chem Inf Comput Sci 38:189–199Google Scholar
  36. 36.
    Wold S, Eriksson L (1995) Statistical validation of QSAR results. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH, Weinheim, pp 309–318CrossRefGoogle Scholar
  37. 37.
    Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77CrossRefGoogle Scholar
  38. 38.
    Golbraikh A, Tropsha A (2002) Beware of q 2! J Mol Graph Mod 20:269–276CrossRefGoogle Scholar
  39. 39.
    Geisser S (1975) The predictive sample reuse method with application. J Am Stat Assoc 70:320–328CrossRefGoogle Scholar
  40. 40.
    Kubinyi H (2003) QSAR in drug design. In: Gasteiger J (ed) Handbook of chemoinformatics. Wiley-VCH, Weinheim, pp 1532–1554CrossRefGoogle Scholar
  41. 41.
    Karki RG, Kulkarni VM (2001) Three-dimensional quantitative structure–activity relationship (3D-QSAR) of 3-aryloxazolidin-2-one antibacterials. Bioorg Med Chem 9:3153–3160CrossRefGoogle Scholar
  42. 42.
    Pripp AH (2006) Quantitative structure-activity relationship of prolyl oligopeptidase inhibitory peptides derived from β-casein using simple amino acid descriptors. J Agric Food Chem 54:224–228CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • João Paulo S. Fernandes
    • 1
    Email author
  • Kerly Fernanda M. Pasqualoto
    • 1
  • Elizabeth I. Ferreira
    • 1
  • Carlos A. Brandt
    • 2
  1. 1.Laboratório de Planejamento e Síntese de Quimioterápicos Potenciais Contra Endemias Tropicais, Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloBrazil
  2. 2.Instituto ButantanSão PauloBrazil

Personalised recommendations