Journal of Molecular Modeling

, Volume 17, Issue 4, pp 701–708

Computational characterization of sodium selenite using density functional theory

  • Diana Barraza-Jiménez
  • Manuel Alberto Flores-Hidalgo
  • Donald H. Galvan
  • Esteban Sánchez
  • Daniel Glossman-Mitnik
Original Paper

Abstract

In this theoretical study we used density functional theory to calculate the molecular and crystalline structures of sodium selenite. Our structural results were compared with experimental data. From the molecular structure we determined the ionization potential, electronic affinity, and global reactivity parameters like electronegativity, hardness, softness and global electrophilic index. A significant difference in the IP and EA values was observed, and this difference was dependent on the calculation method used (employing either vertical or adiabatic energies). Thus, values obtained for the electrophilic index (2.186 eV from vertical energies and 2.188 eV from adiabatic energies) were not significantly different. Selectivity was calculated using the Fukui functions. Since the Mulliken charge study predicted a negative value, it is recommended that AIM should be used in selectivity characterization. It was evident from the selectivity index that sodium atoms are the most sensitive sites to nucleophilic attack. The results obtained in this work provide data that will aid the characterization of compounds used in crop biofortification.

Keywords

Molecular structure sodium selenite Crystal structure sodium selenite Global electrophilic index Fukui functions Biofortification 

References

  1. 1.
    Ximénez-Embún P, Alonso I, Madrid-Albarrán Y, Cámara C (2004) Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J Agric Food Chem 52(4):832–838Google Scholar
  2. 2.
    Zhu Y-G, Pilon-Smits EAH, Zhao F-J, Williams PN, Megharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Science 14:436–442. doi:10.1016/j.tplants.2009.06.006 CrossRefGoogle Scholar
  3. 3.
    Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61:203–215CrossRefGoogle Scholar
  4. 4.
    Diwadkar-Navsariwala V, Prins GS, Swanson SM, Birch LA, Ray VH, Hedayat S, Lantvit DL, Diamond AM (2006) Selenoprotein deficiency accelerates prostate carcinogenesis in a transgenic model. Proc Natl Acad Sci USA 103:8179–8184CrossRefGoogle Scholar
  5. 5.
    Smkolji P, Pograje L, Hlaston-Ribic C, Stibilj V (2005) Selenium content in selected Slovenian foodstuffs and estimated daily intakes of selenium. Food Chem 90:691–697. doi:10.1016/j.foodchem.2004.04.028 CrossRefGoogle Scholar
  6. 6.
    Pedrero Z, Madrid Y, Cámara C (2006) Selenium species bioaccessibility in enriched radish (Raphanus sativus): a potential dietary source of selenium. J Agric Food Chem 54:2412–2417CrossRefGoogle Scholar
  7. 7.
    Chen L, Yang F, Xu J, Yun H, Hu Q, Zhang Y, Pan G (2002) Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on Se content of rice. J Agric Food Chem 50:5128–5130CrossRefGoogle Scholar
  8. 8.
    Lyons GH, Stangoulis JCR, Gram RD (2004) Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the Harvest Plust programs. Nutr Rev 62:247–252Google Scholar
  9. 9.
    Abdo KM (1994) Toxicity Report Series Number 38. National Toxicology Program, BethesdaGoogle Scholar
  10. 10.
    Pehrson B, Ortman K, Madjid N, Trafikowska U (1999) The influence of dietary selenium as selenium yeast or sodium selenite on the concentration of selenium in the milk of Suckler cows and on the selenium status of their calves. J Anim Sci 77:3371–3376Google Scholar
  11. 11.
    Romero-Pérez A, García-García E, Zavaleta-Mancera A, Ramírez-Bribiesca JE, Revilla-Vázquez A, Hernández-Calva LM, López-Arellano R, Cruz-Monterrosa RG (2010) Designing and evaluation of sodium selenite nanoparticles in vitro to improve selenium absorption in ruminants. Vet Res Commun 34:71–79. doi:10.1007/s11259-009-9335-z CrossRefGoogle Scholar
  12. 12.
    Li X, Liu Y, Deng F, Wang C, Qu S (2000) Microcalorimetric study of the toxic effect of sodium selenite on the mitochondria metabolism of Carassius auratus liver. Biol Trace Elem Res 77:261–271Google Scholar
  13. 13.
    Ting-Ming C, Fang-Yuan H, Cai-Min X, Bing-She H, Hua D, Lu Z, Xuan W, Yang Y, Hua-Zhen P, Zhi-Nan Z (2006) Distinct effects of different concentrations of sodium selenite on apoptosis, cell cycle, and gene expression profile in acute promyeloytic leukemia-derived NB4 cells. Ann Hematol 85:434–442. doi:10.1007/s00277-005-0046-4 CrossRefGoogle Scholar
  14. 14.
    Sharma S, Bansal A, Dhillon SK, Karaj S (2009) Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.) Dhillon. Plant Soil. doi:10.1007/s11104-009-0162-3 Google Scholar
  15. 15.
    Sanuki S, Kojima T, Arai M, Nagaoka S, Majima H (1999) Photocatalytic reduction of selenate and selenite solutions using TiO2. Metall Mater Trans B 30B:15–20. doi:10.1007/s11663-999-0002-0 CrossRefGoogle Scholar
  16. 16.
    Xiong G, Sullivan VS, Stair PC, Zajac GW, Trail SS, Kaduk JA, Golabb JT, Brazdil JF (2004) Effect of titanium substitution on the structure of VSbO4 catalysts for propane ammoxidation. J Catal 230:317–326. doi:10.1016/j.jcat.11.046 CrossRefGoogle Scholar
  17. 17.
    Ding YC, Xiang AP, Xu M, Zhu WJ (2008) Electronic structures and optical properties of ٧-Si3N4 doped with La. Physica B 403:2200–2206. doi:10.1016/j.physb.2007.11.025 CrossRefGoogle Scholar
  18. 18.
    Zhou X, Liu T, Zhang Q, Cheng F, Qiao H (2009) First-principles study of cadmium vacancy in CdWO4 crystal. Solid State Sci 11:2071–2074. doi:10.1016/j.solidstatesciences.2009.09.006 CrossRefGoogle Scholar
  19. 19.
    Louail L, Haddadi K, Maouche D, Ali Sahraoui F, Hachemi A (2008) Electronic band structure of calcium selenide under pressure. Physica B 403:3022–3026CrossRefGoogle Scholar
  20. 20.
    Gua W, Wang SY, Xu M, Chen YR, Chen LY, Jia Y (2009) Studies of the electronic and optical properties of BaMxO1_x (M = S, Se, Te) using first-principle calculations. Opt Commun 282:48–52. doi:10.1016/j.optcom.2008.09.077 CrossRefGoogle Scholar
  21. 21.
    Zhang H, Liu T, Zhang Q, Wang X, Guo X, Song M, Yin J (2009) First-principles study on electronic structures and color centers in BaWO4 crystal with barium vacancy. Physica B 404:1538–1543. doi:10.1016/j.physb.2009.01.011 CrossRefGoogle Scholar
  22. 22.
    Verma VP (1999) A review of synthetic thermoanalytical, IR, Raman and X-ray studies on metal selenites. Thermochim Acta 327:63–102CrossRefGoogle Scholar
  23. 23.
    Vlaev L, Tavlieva M, Barthel J (2007) Temperature and concentration dependences of the electrical conductance, diffuson and kinetic parameters of sodium selenite solutions in ordinary and heavy water. J Sol Chem 36:447–465. doi:10.1007/s10953-007-9125-6 CrossRefGoogle Scholar
  24. 24.
    Pronina NA, Kovshova YI, Popova VV, Lapin AB, Alekseeva SG, Baum RF, Mishina IM, Tsoglin LN (2002) The effect of selenite ions on growth and selenium accumulation in Spirulina platensis. Russ J Plant Physiol 49:235–241. doi:10.1023/A:1014809825140 CrossRefGoogle Scholar
  25. 25.
    Wang Y (2009) Differential effects of sodium selenite and nano-Se on growth performance, tissue Se distribution, and glutathione peroxidase activity of avian broiler. Biol Trace Elem Res 128:184–190. doi:10.1007/s12011-008-8264-y CrossRefGoogle Scholar
  26. 26.
    Wickleder MS (2002) Sodium selenite, Na2SeO3. Acta Cryst E58:i103–i104Google Scholar
  27. 27.
    Altmann JA, Handy NC (1999) Evaluation of the performance of the HCTH exchange-correlation functional using a benchmark of sulfur compounds. Phys Chem Chem Phys 1:5529–5536CrossRefGoogle Scholar
  28. 28.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 163:864–871. doi:10.1103/PhysRev.136.B864 Google Scholar
  29. 29.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–A1138. doi:10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  30. 30.
    Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744. doi:10.1088/0953-8984/14/11/301 CrossRefGoogle Scholar
  31. 31.
    Broyden CG (1970) The convergence of a class of double-rank minimization algorithms. 2: The new algorithms. J Inst Math Appl 6:222–231. doi:10.1093/imamat/6.3.222 CrossRefGoogle Scholar
  32. 32.
    Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13:317–322. doi:10.1093/comjnl/13.3.317 CrossRefGoogle Scholar
  33. 33.
    Goldfarb D (1970) A family of variable-metric algorithms derived by variational means. Math Comput 24:23–26CrossRefGoogle Scholar
  34. 34.
    Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24:647–656CrossRefGoogle Scholar
  35. 35.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249. doi:10.1103/PhysRevB.45.13244 CrossRefGoogle Scholar
  36. 36.
    Accelrys Software Inc. (2008) Materials Studio modeling, CASTEP code, release 4.4. Accelrys Software Inc., San DiegoGoogle Scholar
  37. 37.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in generalized eigenvalue formalism. Phys Rev B 41:7892–7895. doi:10.1103/PhysRevB.41.7892 CrossRefGoogle Scholar
  38. 38.
    Accelrys Software Inc. (2008) Materials Studio release notes, release 4.4. Accelrys Software Inc., San DiegoGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc., WallingfordGoogle Scholar
  40. 40.
    Hamprecht FA, Cohem AJ, Tozer DJ, Handy NC (1998) Development and assessment of new exchange-correlation functional. J Chem Phys 109:6264. doi:10.1063/1.477267 CrossRefGoogle Scholar
  41. 41.
    Boese AD, Handy NC (2000) New generalized gradient approximation functional. J Chem Phys 112:1670–1678. doi:10.1063/1.480732 CrossRefGoogle Scholar
  42. 42.
    Boese AD, Martin JML (2004) Development of novel density functionals for thermochemical kinetics. J Chem Phys 121:3405–3416. doi:10.1063/1.1774975 CrossRefGoogle Scholar
  43. 43.
    Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can J Chem 70:560–571. doi:10.1139/v92-079 CrossRefGoogle Scholar
  44. 44.
    Coquet R, Mizuki T, Iwasawa Y (2007) Energy-gaining formation and catalytic behavior of active structures in a SiO2-supported unsaturated Ru complex catalyst for alkene epoxidation by DFT calculations. Phys Chem Chem Phys 9:6040–6046. doi:10.1039/b710714e CrossRefGoogle Scholar
  45. 45.
    Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050. doi:10.1021/ja00326a036 CrossRefGoogle Scholar
  46. 46.
    Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. J Chem Phys 23:1833–1840. doi:10.1063/1.1740588 CrossRefGoogle Scholar
  47. 47.
    Mulliken RS (1962) Criteria for the construction of good self-consistent field molecular orbital wavefunctions and the significance of LCAO-MO population analysis. J Chem Phys 36:3428–3439CrossRefGoogle Scholar
  48. 48.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, OxfordGoogle Scholar
  49. 49.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807. doi:10.1063/1.436185 CrossRefGoogle Scholar
  50. 50.
    Toro-Labbé A (1999) Characterization of chemical reactions from the profiles of energy, chemical potential and hardness. J Phys Chem A 103:4398–4403. doi:10.1021/jp984187g CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Diana Barraza-Jiménez
    • 1
  • Manuel Alberto Flores-Hidalgo
    • 2
  • Donald H. Galvan
    • 3
  • Esteban Sánchez
    • 1
  • Daniel Glossman-Mitnik
    • 2
  1. 1.Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad DeliciasDelicias ChihMéxico
  2. 2.Centro de Investigación en Materiales AvanzadosChihuahua ChihMéxico
  3. 3.Centro de Nanociencias y Nanotecnología-Universidad Nacional Autónoma de MéxicoBaja CaliforniaMéxico

Personalised recommendations