Journal of Molecular Modeling

, Volume 17, Issue 3, pp 423–428 | Cite as

Near-field enhancement of infrared intensities for f-f transitions in Er3+ ions close to the surface of silicon nanoparticles

  • Lesya Borowska
  • Stephan Fritzsche
  • Pieter G. Kik
  • Artëm E. MasunovEmail author
Original Paper


Erbium doped waveguide amplifiers can be used in optical integrated circuits to compensate for signal losses. Such amplifiers use stimulated emission from the first excited state (4 I 13/2) to the ground state (4 I 15/2) of Er3+ at 1.53 µm, the standard wavelength for optical communication. Since the intra-f transitions are parity forbidden for free Er3+ ions, the absorption and the emission cross sections are quite small for such doped amplifiers. To enhance the absorption, Si nanoclusters can be embedded in silica matrix. Here we investigate the effect of the Si nanocluster on the Er3+ emission using ab initio theory for the first time. We combine multi-reference configuration interaction with one-electron spin-orbit Hamiltonian and relativistic effective core potentials. Our calculations show that the presence of a polarizable Be atom at 5Ǻ from the Er3+ ion in a crystalline environment can lead to an enhancement in the emission by a factor of three. The implications of this effect in designing more efficient optical gain materials are discussed.


Erbium replaces Yttrium at the C2 site in the crystal structure of Yttrium sesquioxide, and the nearby Silicon nanocluster enhances the probabilities of the dipole forbidden f-f transitions


Ab initio theory Erbium doped waveguide amplifiers Optical gain materials Spin-orbit coupling 



This work is supported in part by the UCF Nanoscience Technology Center and the Gesellschaft für Schwerionenforschung. The authors would like to thank Prof. Ehresmann, Dr. Demekhin, Dr. Fedorov for discussions, E. Vinogradova for help with the manuscript preparation, and the UCF Institute for Simulation and Training (IST) Stokes HPCC facility for generous donation of the computer time.


  1. 1.
    Lin H et al (2003) Er3+ doped Na2O-Nb2O5-TeO2 glasses for optical waveguide laser and amplifier. J Phys D Appl Phys 36:812–817CrossRefGoogle Scholar
  2. 2.
    Seat HC, Sharp JH (2003) Er3+/Yb3+-codoped Al2O3 crystal fibres for high-temperature sensing. Meas Sci Technol 14:279–285CrossRefGoogle Scholar
  3. 3.
    Lira A et al (2004) Spectroscopic characterization of Er3+ transitions in Bi4Si3O12. J Phys Condens Matter 16:5925–5936CrossRefGoogle Scholar
  4. 4.
    Daldosso N et al (2005) Absorption cross section and signal enhancement in Er-doped Si nanocluster rib-loaded waveguides. Appl Phys Lett 86:261103CrossRefGoogle Scholar
  5. 5.
    Maurizio C et al. (2006) Er site in Er-implanted Si nanoclusters embedded in SiO2. Phys Rev B 74:205428CrossRefGoogle Scholar
  6. 6.
    Serincan U et al (2007) Variation of photoluminescence from Si nanostructures in SiO2 matrix with Si+ post implantation. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 254:87–92CrossRefGoogle Scholar
  7. 7.
    Kik PG, Polman A (2001) Exciton-erbium energy transfer in si nanocrystal-doped SiO2. Mater Sci Eng B Solid-State Mater Adv Technol 81:3–8Google Scholar
  8. 8.
    Franzo G, et al (2000) Er3+ ions-Si nanocrystals interactions and their effects on the luminescence properties. Appl Phys Lett 76:2167–2169; Dammak M, Maalej R, Kamoun M, Deschanvres JL (2003) Crystal field analysis of erbium doped yttrium oxide thin films in C 2 and C 3i sites. Phys Stat Solid B-Basic Res 239:193–202Google Scholar
  9. 9.
    Kik PG, Polman A (2001) Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2. J Appl Phys 91:534–536CrossRefGoogle Scholar
  10. 10.
    Han HS et al (2002) Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier. Appl Phys Lett 81:3720–3722CrossRefGoogle Scholar
  11. 11.
    Clement TJ et al (2006) Nanocluster sensitized erbium-doped silicon monoxide waveguides. Opt Express 14:12151–12162CrossRefGoogle Scholar
  12. 12.
    Mertens H et al (2005) Absence of the enhanced intra-4f transition cross section at 1.5 mu m of Er3+ in Si-rich SiO2. Appl Phys Lett 86:241109CrossRefGoogle Scholar
  13. 13.
    Prakash GV et al. (2001) Structural and optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition. J Nanosci Nanotech 1:159–168CrossRefGoogle Scholar
  14. 14.
    Klimov VV, Ducloy M, Letokhov VS (2001) Spontaneous emission of an atom in the presence of nanobodies. Quantum Electron 31:569–586CrossRefGoogle Scholar
  15. 15.
    Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127:750CrossRefGoogle Scholar
  16. 16.
    Smentek L, Wybourne BG, Hess BA (2001) Judd-Ofelt theory in a new light on its (almost) 40th anniversary. J Alloys Compd 323:645–648CrossRefGoogle Scholar
  17. 17.
    Matsuoka O (1992) Relativistic self-consistent-field methods for molecules. 3. All-electron calculations on diatomics HI, HI+, AtH, and AtH+. J Chem Phys 97:2271–2275CrossRefGoogle Scholar
  18. 18.
    Dyall KG (1993) Relativistic effects on the bonding and properties of the hydrides of platinum. J Chem Phys 98:9678–9686CrossRefGoogle Scholar
  19. 19.
    Sanoyama E, Kobayashi H, Yabushita S (1998) Spin-orbit CI study on multiplet terms of trivalent lanthanide cations. J Mol Struct Theochem 451:189–204CrossRefGoogle Scholar
  20. 20.
    Dyall KG (1994) 2nd-order moller-plesset perturbation-theory for molecular Dirac-Hartree-Fock wave-functions - theory for up to 2 open-shell electrons. Chem Phys Lett 224:186–194CrossRefGoogle Scholar
  21. 21.
    Visscher L, Lee TJ, Dyall KG (1996) Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples. J Chem Phys 105:8769–8776CrossRefGoogle Scholar
  22. 22.
    Fedorov D, Schmidt MW, Koseki S, Gordon S (2004) Spin-orbit coupling and applications to chemistry, recent advances in relativistic molecular theory. World Scientific 5:107–136Google Scholar
  23. 23.
    Koseki S, Schmidt MW, Gordon MS (1998) Effective nuclear charges for the first- through third-row transition metal elements in spin-orbit calculations. J Phys Chem A 102:10430–10435CrossRefGoogle Scholar
  24. 24.
    Koseki S et al (2001) Spin-orbit splittings in the third-row transition elements: Comparison of effective nuclear charge and full Breit-Pauli calculations. J Phys Chem A 105:8262–8268CrossRefGoogle Scholar
  25. 25.
    Cundari TR, Stevens WJ (1993) Effective core potential methods for the Lanthanides. J Chem Phys 98:5555–5565CrossRefGoogle Scholar
  26. 26.
    Cao XY, Dolg M (2002) Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J Mol Struct Theochem 581:139–147CrossRefGoogle Scholar
  27. 27.
    Sugar J, Reader J (1973) Ionization energies of doubly and triply ionized rare-earths. J Chem Phys 59:2083–2089CrossRefGoogle Scholar
  28. 28.
    Kelleher DE et al (1999) The new NIST atomic spectra database. Phys Scr T83:158–161CrossRefGoogle Scholar
  29. 29.
    Maslen EN, Streltsov VA, Ishizawa N (1996) A synchrotron X-ray study of the electron density in C-type rare earth oxides. Acta Crystallogr B Struct Sci 52:414–422CrossRefGoogle Scholar
  30. 30.
    Lengsfield BH et al (1981) On the use of corresponding orbitals in the calculation of non-orthogonal transition moments. J Chem Phys 74:6849–6856CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lesya Borowska
    • 1
    • 3
    • 4
  • Stephan Fritzsche
    • 5
  • Pieter G. Kik
    • 2
  • Artëm E. Masunov
    • 1
    Email author
  1. 1.NanoScience Technology Center, Department of Chemistry, and Department of PhysicsUniversity of Central FloridaOrlandoUSA
  2. 2.CREOL, The College of Optics and PhotonicsUniversity of Central FloridaOrlandoUSA
  3. 3.Institute for Nuclear Research NAS of UkraineKyivUkraine
  4. 4.University of BonnBonnGermany
  5. 5.Gesellschaft für Schwerionenforschung (GSI)DarmstadtGermany

Personalised recommendations