Journal of Molecular Modeling

, Volume 17, Issue 1, pp 133–150

Binding Selectivity of RecA to a single stranded DNA, a computational approach

Original Paper
  • 230 Downloads

Abstract

Homologous recombination (HR) is the major DNA double strand break repair pathway which maintains the genomic integrity. It is fundamental for the survivability and functionality of all organisms. One of the initial steps in HR is the formation of the nucleoprotein filament composed by a single stranded DNA chain surrounded by the recombinases protein. The filament orchestrates the search for an undamaged homologue, as a template for the repair process. Our theoretical study was aimed at elucidating the selectivity of the interaction between a monomer of the recombinases enzyme in the Escherichia coli, EcRecA, the bacterial homologue of human Rad51, with a series of oligonucleotides of nine bases length. The complex, equilibrated for 20 ns with Langevian dynamics, was inserted in a periodic box with a 8 Å buffer of water molecules explicitly described by the TIP3P model. The absolute binding free energies are calculated in an implicit solvent using the Poisson-Boltzmann (PB) and the generalized Born (GB) solvent accessible surface area, using the MM-PB(GB)SA model. The solute entropic contribution is also calculated by normal mode analysis. The results underline how a significant contribution of the binding free energy is due to the interaction with the Arg196, a critical amino acid for the activity of the enzyme. The study revealed how the binding affinity of EcRecA is significantly higher toward dT9 rather than dA9, as expected from the experimental results.

Keywords

Binding EcRecA Homologous recombination MM-PBSA Molecular dynamics 

References

  1. 1.
    Vessey CJ, Norbury CJ, Hickson ID (1999) Genetic disorders associated with cancer predisposition and genomic instability. Prog Nucleic Acid Res Mol Biol 63:189–221CrossRefGoogle Scholar
  2. 2.
    Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291:1284–1289CrossRefGoogle Scholar
  3. 3.
    Durante M, Cucinotta FA (2008) Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer 8:465–472CrossRefGoogle Scholar
  4. 4.
    Scharer OD (2003) Chemistry and biology of DNA repair. Angew Chem Int Ed Engl 42:2946–2974CrossRefGoogle Scholar
  5. 5.
    Lusetti SL, Cox MM (2002) The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem 71:71–100CrossRefGoogle Scholar
  6. 6.
    Seitz EM, Brockman JP, Sandler SJ, Clark AJ, Kowalczykowski SC (1998) RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev 12:1248–1253CrossRefGoogle Scholar
  7. 7.
    Ogawa T, Yu X, Shinohara A, Egelman EH (1993) Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259:1896–1899CrossRefGoogle Scholar
  8. 8.
    Register JC 3rd, Griffith J (1985) The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. J Biol Chem 260:12308–12312Google Scholar
  9. 9.
    Story RM, Steitz TA (1992) Structure of the recA protein-ADP complex. Nature 355:374–376CrossRefGoogle Scholar
  10. 10.
    Chen Z, Yang H, Pavletich NP (2008) Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453:489–484CrossRefGoogle Scholar
  11. 11.
    Aihara H, Ito Y, Kurumizaka H, Terada T, Yokoyama S, Shibata T (1997) An interaction between a specified surface of the C-terminal domain of RecA protein and double-stranded DNA for homologous pairing. J Mol Biol 274:213–221CrossRefGoogle Scholar
  12. 12.
    Kurumizaka H, Aihara H, Ikawa S, Kashima T, Bazemore LR, Kawasaki K, Sarai A, Radding CM, Shibata T (1996) A possible role of the C-terminal domain of the RecA protein. A gateway model for double-stranded DNA binding. J Biol Chem 271:33515–33524CrossRefGoogle Scholar
  13. 13.
    Roca AI, Cox MM (1997) RecA protein: structure, function, and role in recombinational DNA repair. Prog Nucleic Acid Res Mol Biol 56:129–223CrossRefGoogle Scholar
  14. 14.
    Karlin S, Brocchieri L (1996) Evolutionary conservation of RecA genes in relation to protein structure and function. J Bacteriol 178:1881–1894Google Scholar
  15. 15.
    Brendel V, Brocchieri L, Sandler SJ, Clark AJ, Karlin S (1997) Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J Mol Evol 44:528–541CrossRefGoogle Scholar
  16. 16.
    Story RM, Bishop DK, Kleckner N, Steitz TA (1993) Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast. Science 259:1892–1896CrossRefGoogle Scholar
  17. 17.
    Hortnagel K, Voloshin ON, Kinal HH, Ma N, Schaffer-Judge C, Camerini-Otero RD (1999) Saturation mutagenesis of the E. coli RecA loop L2 homologous DNA pairing region reveals residues essential for recombination and recombinational repair. J Mol Biol 286:1097–1106CrossRefGoogle Scholar
  18. 18.
    Balsera MA, Wriggers W, Oono Y, Shulten K (1996) Principal component analysis and long time protein dynamics. J Phys Chem 100:2567–2572CrossRefGoogle Scholar
  19. 19.
    Meagher KL, Redman LT, Carlson HA (2003) Development of polyphosphate parameters for use with the AMBER force field. J Comput Chem 24:1016–1025CrossRefGoogle Scholar
  20. 20.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2008) Amber 9. University of California, San FranciscoGoogle Scholar
  21. 21.
    Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE 3rd, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J 92:3817–3829CrossRefGoogle Scholar
  22. 22.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  23. 23.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  24. 24.
    Pastor RW, Brooks BR, Szabo A (1988) Mol Phys 65:1409–1419CrossRefGoogle Scholar
  25. 25.
    Miyamoto S, Kollman PA (1992) J Comput Chem 13:952–962CrossRefGoogle Scholar
  26. 26.
    Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149CrossRefGoogle Scholar
  27. 27.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE 3rd (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897CrossRefGoogle Scholar
  28. 28.
    Jorgensen WL (1989) Free energy calculations: a breakthrough for modeling organic chemistry in solution. Acc Chem Res 22:184–189CrossRefGoogle Scholar
  29. 29.
    William LJ, Buckner JK, Stephane B, Julian T-R (1988) Efficient computation of absolute free energies of binding by computer simulations. Application to the methane dimer in water. J Chem Phys 89:3742–3746CrossRefGoogle Scholar
  30. 30.
    Hermans J, Wang L (1997) Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. Application to a complex of benzene and mutant T4 lysozyme. J Am Chem Soc 119:2707–2714CrossRefGoogle Scholar
  31. 31.
    Roux B, Nina M, Pomes R, Smith JC (1996) Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study. Biophys J 71:670–681CrossRefGoogle Scholar
  32. 32.
    Reyes CM, Kollman PA (2000) Structure and thermodynamics of RNA-protein binding: using molecular dynamics and free energy analyses to calculate the free energies of binding and conformational change. J Mol Biol 297:1145–1158CrossRefGoogle Scholar
  33. 33.
    Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330:891–913CrossRefGoogle Scholar
  34. 34.
    Olufsen M, Smalas AO, Brandsdal BO (2008) Electrostatic interactions play an essential role in DNA repair and cold-adaptation of uracil DNA glycosylase. J Mol Model 14:201–213CrossRefGoogle Scholar
  35. 35.
    Hawkins GD, Cramer CJ, Truhlar DG (1996) Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J Phys Chem 100:19824–19839CrossRefGoogle Scholar
  36. 36.
    Onufriev A, Bashford D, Case DA (2000) Modification of the generalized Born modelsuitable for macromolecules. J Phys Chem B 104:3712–3720CrossRefGoogle Scholar
  37. 37.
    Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55:383–394CrossRefGoogle Scholar
  38. 38.
    Mongan J, Simmerling C, McCammon JA, Case D, Onufriev A (2006) Generalized Born with a simple, robust molecular volume correction. J Chem Theory Comput 3:156–169CrossRefGoogle Scholar
  39. 39.
    Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988CrossRefGoogle Scholar
  40. 40.
    Ichiye T, Karplus M (1991) Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins 11:205–217CrossRefGoogle Scholar
  41. 41.
    Rod TH, Radkiewicz JL, Brooks CL 3rd (2003) Correlated motion and the effect of distal mutations in dihydrofolate reductase. Proc Natl Acad Sci USA 100:6980–6985CrossRefGoogle Scholar
  42. 42.
    Radkiewicz JL, Charles CL (2000) protein dynamics in enzymatic catalysis: exploration of dihydrofolate reductase. J Am Chem Soc 122:225–231CrossRefGoogle Scholar
  43. 43.
    Prompers JJ, Bruschweiler R (2002) Dynamic and structural analysis of isotropically distributed molecular ensembles. Proteins 46:177–189CrossRefGoogle Scholar
  44. 44.
    Prompers JJ, Bruschweiler R (2002) General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation. J Am Chem Soc 124:4522–4534CrossRefGoogle Scholar
  45. 45.
    Hayward S, Kitao A, Hirata F, Go N (1993) Effect of solvent on collective motions in globular protein. J Mol Biol 234:1207–1217CrossRefGoogle Scholar
  46. 46.
    Amadei A, Linssen AB, de Groot BL, van Aalten DM, Berendsen HJ (1996) An efficient method for sampling the essential subspace of proteins. J Biomol Struct Dyn 13:615–625Google Scholar
  47. 47.
    van Aalten DM, Amadei A, Linssen AB, Eijsink VG, Vriend G, Berendsen HJ (1995) The essential dynamics of thermolysin: confirmation of the hinge-bending motion and comparison of simulations in vacuum and water. Proteins 22:45–54CrossRefGoogle Scholar
  48. 48.
    Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17:412–425CrossRefGoogle Scholar
  49. 49.
    Meyer T, Ferrer-Costa C, Pérez A, Rueda M, Bidon-Chanal A, Luque FJ, Laughton CA, Orozco M (2006) Essential dynamics: a tool for efficient trajectory compression and management. J Chem Theory Comput 2:251–258CrossRefGoogle Scholar
  50. 50.
    Tai K, Shen T, Borjesson U, Philippopoulos M, McCammon JA (2001) Analysis of a 10-ns molecular dynamics simulation of mouse acetylcholinesterase. Biophys J 81:715–724CrossRefGoogle Scholar
  51. 51.
    Joo C, McKinney SA, Nakamura M, Rasnik I, Myong S, Ha T (2006) Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126:515–527CrossRefGoogle Scholar
  52. 52.
    Galletto R, Amitani I, Baskin RJ, Kowalczykowski SC (2006) Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 443:875–878CrossRefGoogle Scholar
  53. 53.
    Menetski JP, Kowalczykowski SC (1985) Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors. J Mol Biol 181:281–295CrossRefGoogle Scholar
  54. 54.
    McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86:469–489CrossRefGoogle Scholar
  55. 55.
    Abagyan R, Argos P (1992) Optimal protocol and trajectory visualization for conformational searches of peptides and proteins. J Mol Biol 225:519–532CrossRefGoogle Scholar
  56. 56.
    Barrett CP, Noble ME (2005) Molecular motions of human cyclin-dependent kinase 2. J Biol Chem 280:13993–14005CrossRefGoogle Scholar
  57. 57.
    Troyer JM, Cohen FE (1995) Protein conformational landscapes: energy minimization and clustering of a long molecular dynamics trajectory. Proteins 23:97–110CrossRefGoogle Scholar
  58. 58.
    Caves LS, Evanseck JD, Karplus M (1998) Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Protein Sci 7:649–666Google Scholar
  59. 59.
    Becker OR (1998) J Comput Chem 19:1255–1267CrossRefGoogle Scholar
  60. 60.
    Becker MO (1997) Quantitative visualization of a molecular potential energy “funnel”. J Mol Struct THEOCHEM398–399:507–516Google Scholar
  61. 61.
    Wolynes PG (2005) Recent successes of the energy landscape theory of protein folding and function. Q Rev Biophys 38:405–410CrossRefGoogle Scholar
  62. 62.
    Okazaki K, Koga N, Takada S, Onuchic JN, Wolynes PG (2006) Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: structure-based molecular dynamics simulations. Proc Natl Acad Sci USA 103:11844–11849CrossRefGoogle Scholar
  63. 63.
    Levy Y, Cho SS, Onuchic JN, Wolynes PG (2005) A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes. J Mol Biol 346:1121–1145CrossRefGoogle Scholar
  64. 64.
    Levy Y, Wolynes PG, Onuchic JN (2004) Protein topology determines binding mechanism. Proc Natl Acad Sci USA 101:511–516CrossRefGoogle Scholar
  65. 65.
    Papoian GA, Wolynes PG (2003) The physics and bioinformatics of binding and folding-an energy landscape perspective. Biopolymers 68:333–349CrossRefGoogle Scholar
  66. 66.
    Miller DW, Dill KA (1997) Ligand binding to proteins: the binding landscape model. Protein Sci 6:2166–2179CrossRefGoogle Scholar
  67. 67.
    Wang J, Verkhivker GM (2003) Energy landscape theory, funnels, specificity, and optimal criterion of biomolecular binding. Phys Rev Lett 90:188181Google Scholar
  68. 68.
    Huo S, Massova I, Kollman PA (2002) Computational alanine scanning of the 1:1 human growth hormone-receptor complex. J Comput Chem 23:15–27CrossRefGoogle Scholar
  69. 69.
    Tsui V, Case DA (2001) Calculations of the absolute free energies of binding between RNA and metal ions using molecular dynamics simulations and continuum electrostatics. J Phys Chem B 105:11314–11325CrossRefGoogle Scholar
  70. 70.
    Sitkoff D, Sharp KA, Honig B (1994) Accurate Calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988CrossRefGoogle Scholar
  71. 71.
    Wittung P, Ellouze C, Maraboeuf F, Takahashi M, Norden B (1997) Thermochemical and kinetic evidence for nucleotide-sequence-dependent RecA-DNA interactions. Eur J Biochem 245:715–719CrossRefGoogle Scholar
  72. 72.
    Cazenave C, Chabbert M, Toulme JJ, Helene C (1984) Absorption and fluorescence studies of the binding of the recA gene product from E. coli to single-stranded and double-stranded DNA. Ionic strength dependence. Biochim Biophys Acta 781:7–13Google Scholar
  73. 73.
    Bugreeva IP, Bugreev DV, Nevinskii GA (2005) Physico-chemical basis of RecA nucleo-protein filament formation on single. Mol Biol (Mosk) 39:984–998CrossRefGoogle Scholar
  74. 74.
    Bugreeva IP, Bugreev DV, Nevinsky GA (2005) Formation of nucleoprotein RecA filament on single-stranded DNA. Analysis by stepwise increase in ligand complexity. Febs J 272:2734–2745CrossRefGoogle Scholar
  75. 75.
    McEntee K, Weinstock GM, Lehman IR (1981) Binding of the recA protein of Escherichia coli to single- and double-stranded DNA. J Biol Chem 256:8835–8844Google Scholar
  76. 76.
    Amaratunga M, Benight AS (1988) DNA sequence dependence of ATP hydrolysis by RecA protein. Biochem Biophys Res Commun 157:127–133CrossRefGoogle Scholar
  77. 77.
    Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. J Comput Chem 25:238–250CrossRefGoogle Scholar
  78. 78.
    Defais M, Phez E, Johnson NP (2003) Kinetic mechanism for the formation of the presynaptic complex of the bacterial recombinase RecA. J Biol Chem 278:3545–3551CrossRefGoogle Scholar
  79. 79.
    Cox MM (2007) Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42:41–63CrossRefGoogle Scholar
  80. 80.
    Kowalczykowski SC, Paul LS, Lonberg N, Newport JW, McSwiggen JA, von Hippel PH (1986) Cooperative and noncooperative binding of protein ligands to nucleic acid lattices: experimental approaches to the determination of thermodynamic parameters. Biochemistry 25:1226–1240CrossRefGoogle Scholar
  81. 81.
    Cazaux C, Blanchet JS, Dupuis D, Villani G, Defais M, Johnson NP (1998) Investigation of the secondary DNA-binding site of the bacterial recombinase RecA. J Biol Chem 273:28799–28804CrossRefGoogle Scholar
  82. 82.
    Gourves AS, Tanguy Le Gac N, Villani G, Boehmer PE, Johnson NP (2000) Equilibrium binding of single-stranded DNA with herpes simplex virus type I-coded single-stranded DNA-binding protein, ICP8. J Biol Chem 275:10864–10869CrossRefGoogle Scholar
  83. 83.
    De Zutter JK, Knight KL (1999) The hRad51 and RecA proteins show significant differences in cooperative binding to single-stranded DNA. J Mol Biol 293:769–780CrossRefGoogle Scholar
  84. 84.
    Chabbert M, Cazenave C, Helene C (1987) Kinetic studies of recA protein binding to a fluorescent single-stranded polynucleotide. Biochemistry 26:2218–2225CrossRefGoogle Scholar
  85. 85.
    Morrical SW, Cox MM (1985) Light scattering studies of the recA protein of Escherichia coli: relationship between free recA filaments and the recA X ssDNA complex. Biochemistry 24:760–767CrossRefGoogle Scholar
  86. 86.
    McKinney SA, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91:1941–1951CrossRefGoogle Scholar
  87. 87.
    Takahashi M, Kubista M, Norden B (1989) Binding stoichiometry and structure of RecA-DNA complexes studied by flow linear dichroism and fluorescence spectroscopy. Evidence for multiple heterogeneous DNA co-ordination. J Mol Biol 205:137–147CrossRefGoogle Scholar
  88. 88.
    Cox MM, Soltis DA, Lehman IR, DeBrosse C, Benkovic SJ (1983) ADP-mediated dissociation of stable complexes of recA protein and single-stranded DNA. J Biol Chem 258:2586–2592Google Scholar
  89. 89.
    Lee JW, Cox MM (1990) Inhibition of recA protein promoted ATP hydrolysis. 1. ATP gamma S and ADP are antagonistic inhibitors. Biochemistry 29:7666–7676CrossRefGoogle Scholar
  90. 90.
    Forget AL, Kudron MM, McGrew DA, Calmann MA, Schiffer CA, Knight KL (2006) RecA dimers serve as a functional unit for assembly of active nucleoprotein filaments. Biochemistry 45:13537–13542CrossRefGoogle Scholar
  91. 91.
    Brenner SL, Zlotnick A, Griffith JD (1988) RecA protein self-assembly. Multiple discrete aggregation states. J Mol Biol 204:959–972CrossRefGoogle Scholar
  92. 92.
    Brenner SL, Zlotnick A, Stafford WF 3rd (1990) RecA protein self-assembly. II. Analytical equilibrium ultracentrifugation studies of the entropy-driven self-association of RecA. J Mol Biol 216:949–964CrossRefGoogle Scholar
  93. 93.
    Wilson DH, Benight AS (1990) Kinetic analysis of the pre-equilibrium steps in the self-assembly of RecA protein from Escherichia coli. J Biol Chem 265:7351–7359Google Scholar
  94. 94.
    DiCapua E, Schnarr M, Ruigrok RW, Lindner P, Timmins PA (1990) Complexes of RecA protein in solution. A study by small angle neutron scattering. J Mol Biol 214:557–570CrossRefGoogle Scholar
  95. 95.
    Heuser J, Griffith J (1989) Visualization of RecA protein and its complexes with DNA by quick-freeze/deep-etch electron microscopy. J Mol Biol 210:473–484CrossRefGoogle Scholar
  96. 96.
    Ruigrok RW, DiCapua E (1991) On the polymerization state of recA in the absence of DNA. Biochimie 73:191–198CrossRefGoogle Scholar
  97. 97.
    Yu X, Egelman EH (1992) Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. J Mol Biol 227:334–346CrossRefGoogle Scholar
  98. 98.
    Masui R, Mikawa T, Kato R, Kuramitsu S (1998) Characterization of the oligomeric states of RecA protein: monomeric RecA protein can form a nucleoprotein filament. Biochemistry 37:14788–14797CrossRefGoogle Scholar
  99. 99.
    Haruta N, Yu X, Yang S, Egelman EH, Cox MM (2003) A DNA pairing-enhanced conformation of bacterial RecA proteins. J Biol Chem 278:52710–52723CrossRefGoogle Scholar
  100. 100.
    Bugreeva IP, Bugreev DV, Nevinskii GA (2005) Physico-chemical basis of RecA nucleo-protein filament formation on single. Mol Biol (Mosk) 39:984–998CrossRefGoogle Scholar
  101. 101.
    Bar-Ziv R, Libchaber A (2001) Effects of DNA sequence and structure on binding of RecA to single-stranded DNA. Proc Natl Acad Sci USA 98:9068–9073CrossRefGoogle Scholar
  102. 102.
    Silver MS, Fersht AR (1982) Direct observation of complexes formed between recA protein and a fluorescent single-stranded deoxyribonucleic acid derivative. Biochemistry 21:6066–6072CrossRefGoogle Scholar
  103. 103.
    Gourves AS, Defais M, Johnson NP (2001) Equilibrium binding of single-stranded DNA to the secondary DNA binding site of the bacterial recombinase RecA. J Biol Chem 276:9613–9619CrossRefGoogle Scholar
  104. 104.
    Ha T (2001) Single-molecule fluorescence methods for the study of nucleic acids. Curr Opin Struct Biol 11:287–292CrossRefGoogle Scholar
  105. 105.
    Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93:6264–6268CrossRefGoogle Scholar
  106. 106.
    Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283:1676–1683CrossRefGoogle Scholar
  107. 107.
    Lafont V, Schaefer M, Stote RH, Altschuh D, Dejaegere A (2007) Protein-protein recognition and interaction hot spots in an antigen-antibody complex: free energy decomposition identifies “efficient amino acids”. Proteins 67:418–434CrossRefGoogle Scholar
  108. 108.
    Cunningham BC, Wells JA (1993) Comparison of a structural and a functional epitope. J Mol Biol 234:554–563CrossRefGoogle Scholar
  109. 109.
    Beveridge DL, DiCapua FM (1989) Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem 18:431–492CrossRefGoogle Scholar
  110. 110.
    Straatsma TP, McCammon JA Computational Alchemy. Annu Rev Phys Chem 43:407–435Google Scholar
  111. 111.
    Kollman P (1993) Free energy calculations: applications to chemical and biochemical phenomena. Chem Rev 93:2395–2417CrossRefGoogle Scholar
  112. 112.
    Simonson T, Archontis G, Karplus M (2002) Free energy simulations come of age: protein-ligand recognition. Acc Chem Res 35:430–437CrossRefGoogle Scholar
  113. 113.
    Deng Y, Roux B (2009) Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B 113:2234–2246CrossRefGoogle Scholar
  114. 114.
    Wang J, Deng Y, Roux B (2006) Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys J 91:2798–2814CrossRefGoogle Scholar
  115. 115.
    Mardis KL, Luo R, Gilson MK (2001) Interpreting trends in the binding of cyclic ureas to HIV-1 protease. J Mol Biol 309:507–517CrossRefGoogle Scholar
  116. 116.
    Chen W, Chang CE, Gilson MK (2004) Calculation of cyclodextrin binding affinities: energy, entropy, and implications for drug design. Biophys J 87:3035–3049CrossRefGoogle Scholar
  117. 117.
    Miyamoto S, Kollman PA (1993) Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Proteins 16:226–245CrossRefGoogle Scholar
  118. 118.
    Luzhkov VB, Almlof M, Nervall M, Aqvist J (2006) Computational study of the binding affinity and selectivity of the bacterial ammonium transporter AmtB. Biochemistry 45:10807–10814CrossRefGoogle Scholar
  119. 119.
    Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed Engl 41:2644–2676CrossRefGoogle Scholar
  120. 120.
    Srinivasan J, Miller J, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of RNA hairpin loops and helices. J Biomol Struct Dyn 16:671–682Google Scholar
  121. 121.
    Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov Des 18:113–135CrossRefGoogle Scholar
  122. 122.
    Zhou Z, Madrid M, Evanseck JD, Madura JD (2005) Effect of a bound non-nucleoside RT inhibitor on the dynamics of wild-type and mutant HIV-1 reverse transcriptase. J Am Chem Soc 127:17253–17260CrossRefGoogle Scholar
  123. 123.
    Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43:3786–3791CrossRefGoogle Scholar
  124. 124.
    Masukawa KM, Kollman PA, Kuntz ID (2003) Investigation of neuraminidase-substrate recognition using molecular dynamics and free energy calculations. J Med Chem 46:5628–5637CrossRefGoogle Scholar
  125. 125.
    Huo S, Wang J, Cieplak P, Kollman PA, Kuntz ID (2002) Molecular dynamics and free energy analyses of cathepsin D-inhibitor interactions: insight into structure-based ligand design. J Med Chem 45:1412–1419CrossRefGoogle Scholar
  126. 126.
    Wang W, Lim WA, Jakalian A, Wang J, Wang J, Luo R, Bayly CI, Kollman PA (2001) An analysis of the interactions between the Sem-5 SH3 domain and its ligands using molecular dynamics, free energy calculations, and sequence analysis. J Am Chem Soc 123:3986–3994CrossRefGoogle Scholar
  127. 127.
    Donini OA, Kollman PA (2000) Calculation and prediction of binding free energies for the matrix metalloproteinases. J Med Chem 43:4180–4188CrossRefGoogle Scholar
  128. 128.
    Hou TJ, Guo SL, Xu XJ (2002) Predictions of binding of a diverse set of ligands to gelatinase-A by a Combination of molecular dynamics and continuum solvent models. J Phys Chem B 106:5527–5535CrossRefGoogle Scholar
  129. 129.
    Yan C, Xiu Z, Li X, Li S, Hao C, Teng H (2008) Comparative molecular dynamics simulations of histone deacetylase-like protein: binding modes and free energy analysis to hydroxamic acid inhibitors. Proteins 73:134–149CrossRefGoogle Scholar
  130. 130.
    Wong S, Amaro RE, McCammon JA (2009) MM-PBSA captures key role of intercalating water molecules at a protein-protein interface. J Chem Theory Comput 5:422–429CrossRefGoogle Scholar
  131. 131.
    Tracy RB, Kowalczykowski SC (1996) In vitro selection of preferred DNA pairing sequences by the Escherichia coli RecA protein. Genes Dev 10:1890–1903CrossRefGoogle Scholar
  132. 132.
    Menetski JPK, Stephen C (1985) Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors. J Mol Biol 181:281–295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Universities Space Research AssociationHoustonUSA
  2. 2.NASA-JSC Space Radiation Health ProjectHoustonUSA

Personalised recommendations