Skip to main content
Log in

Optimal molecular structures of prion AGAAAAGA amyloid fibrils formatted by simulated annealing

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

To date, there is little structural data available on the AGAAAAGA palindrome in the hydrophobic region (113–120) of prion proteins, although many experimental studies have shown that this region has amyloid fibril forming properties. This region belongs to the N-terminal unstructured region (1–123) of prions, the structure of which has proved hard to determine using NMR or X-ray crystallography. This paper reports the successful construction of three amyloid fibril models for this region. The models were formatted by standard simulated annealing using suitable templates from the Protein Data Bank, and were refined using several traditional optimization methods within AMBER. Because the NMR or X-ray structure of the hydrophobic region AGAAAAGA of prion proteins has not yet been determined, these models can be used as a reference for experimental studies on this region. The results presented here confirm standard simulated annealing as an effective tool in molecular modeling. The three constructed models for amyloid fibrils may be useful in furthering the goals of medicinal chemistry in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    Article  CAS  Google Scholar 

  2. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  CAS  Google Scholar 

  3. Griffith JS (1967) Self-replication and scrapie. Nature 215:1043–1044

    Article  CAS  Google Scholar 

  4. Brown DR (2000) Prion protein peptides: optimal toxicity and peptide blockade of toxicity. Mol Cell Neurosci 15:66–78

    Article  CAS  Google Scholar 

  5. Brown DR (2001) Microglia and prion disease. Microsc Res Tech 54:71–80

    Article  CAS  Google Scholar 

  6. Holscher C, Delius H, Burkle A (1998) Overexpression of nonconvertible PrPc delta114–121 in scrapie-infected mouse neuroblastoma cells leads to trans-dominant inhibition of wild-type PrPSc accumulation. J Virol 72:1153–1159

    CAS  Google Scholar 

  7. Jobling MF, Huang X, Stewart LR, Barnham KJ, Curtain C, Volitakis I, Perugini M, White AR, Cherny RA, Masters CL, Barrow CJ, Collins SJ, Bush AI, Cappai R (2001) Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP 106–126. Biochemistry 40:8073–8084

    Article  CAS  Google Scholar 

  8. Jobling MF, Stewart LR, White AR, McLean C, Friedhuber A, Maher F, Beyreuther K, Masters CL, Barrow CJ, Collins SJ, Cappai R (1999) The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106–126. J Neurochem 73:1557–1565

    Article  CAS  Google Scholar 

  9. Kuwata K, Matumoto T, Cheng H, Nagayama K, James TL, Roder H (2003) NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106–126. Proc Natl Acad Sci USA 100:14790–14795

    Article  CAS  Google Scholar 

  10. Norstrom EM, Mastrianni JA (2005) The AGAAAAGA palindrome in PrP is required to generate a productive PrPSc-PrPC complex that leads to prion propagation. J Biol Chem 280:27236–27243

    Article  CAS  Google Scholar 

  11. Wegner C, Romer A, Schmalzbauer R, Lorenz H, Windl O, Kretzschmar HA (2002) Mutant prion protein acquires resistance to protease in mouse neuroblastoma cells. J Gen Virol 83:1237–1245

    CAS  Google Scholar 

  12. Brown DR, Herms J, Kretzschmar HA (1994) Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5:2057–2060

    Article  CAS  Google Scholar 

  13. Zhang JP (2009) Studies on the structural stability of rabbit prion probed by molecular dynamics simulations. J Biomol Struct Dyn 27:159–162

    Google Scholar 

  14. Cosentino U, Pitea D, Moro G, Saracino GAA, Caria P, Var RM, Colombo L, Forloni G, Tagliavini F, Salmona M (2008) The anti-fibrillogenic activity of tetracyclineson PrP 106–126: a 3D-QSAR study. J Mol Model 14:987–994

    Article  CAS  Google Scholar 

  15. Henriques ST, Pattenden LK, Aguilar MI, Castanho MA (2008) PrP (106–126) does not interact with membranes under physiological conditions. Biophys J 95:1877–1889

    Article  CAS  Google Scholar 

  16. Okimoto N, Yamanaka K, Suenaga A, Hata M, Hoshimo T (2003) Molecular dynamics simulations of prion proteins—effect of Ala117 → Val mutation. Chem-Bio Informatics J 3:1–11

    Article  CAS  Google Scholar 

  17. Villa A, Mark AE, Saracino GAA, Cosentino U, Pitea D, Moro G, Salmona M (2006) Conformational polymorphism of the PrP 106–126 peptide in different environments: a molecular dynamics study. J Phys Chem B 110:1423–1428

    Article  CAS  Google Scholar 

  18. Zheng W, Wang L, Hong Y, Sha Y (2009) PrP 106–126 peptide disrupts lipid membranes influence of C-terminal amidation. Biochem Biophys Res Commun 379:298–303

    Article  CAS  Google Scholar 

  19. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen A, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457

    Article  CAS  Google Scholar 

  20. Chen HF (2009) Aggregation mechanism investigation of the GIFQINS cross-β amyloid fibril. Comput Biol Chem 33:41–45

    Article  CAS  Google Scholar 

  21. Lee SW, Mou Y, Lin SY, Chou FC, Tseng WH, Chen C, Lu CYD, Yu SSF, Chan JCC (2008) Steric zipper of the amyloid fibrils formed by residues 109 to 122 of the Syrian hamster prion protein. J Mol Biol 378:1142–1154

    Article  CAS  Google Scholar 

  22. Simone AD, Pedone C, Vitagliano L (2008) Structure, dynamics, and stability of assemblies of the human prion fragment SNQNNF. Biochem Biophys Res Commun 366:800–806

    Article  Google Scholar 

  23. Vitagliano L, Stanzione F, Simone AD, Esposito L (2009) Dynamics and stability of amyloid-like steric zipper assemblies with hydrophobic dry interfaces. Biopolymers 91:1161–1171

    Article  CAS  Google Scholar 

  24. Yamaguchi K, Matsumoto T, Kuwata K (2008) Critical region for amyloid fibril formation of mouse prion protein: unusual amyloidogenic properties of the helix 2 peptide. Biochemistry 47:13242–13251

    Article  CAS  Google Scholar 

  25. Zhang ZQ, Chen H, Bai HJ, Lai LH (2007) Molecular dynamics simulations on the oligomer formation process of the GNNQQNY peptide from yeast prion protein Sup35. Biophys J 93:1484–1492

    Article  CAS  Google Scholar 

  26. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  27. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San Francisco. Amber tutorials: http://ambermd.org/tutorials/

  28. Li X, Chen XD (2005) Global convergence of shortest-residual family of conjugate gradient methods without line search. Asia-Pacific J Oper Res 22:529–538

    Article  Google Scholar 

  29. Sun J, Zhang JP (2001) Global convergence of conjugate gradient methods without line Search. Ann Oper Res 103:161–173

    Article  Google Scholar 

  30. Zhu H, Chen XD (2008) Global convergence of a special case of the the Dai-Yuan family without line search. Asia-Pacific J Oper Res 25:411–420

    Article  Google Scholar 

  31. Bagirov AM, Zhang JP (2003) Comparative analysis of the cutting angle and simulated annealing methods in global optimization. Optimization 52:363–378

    Article  Google Scholar 

  32. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  CAS  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  34. Zhang ZQ, Chen H, Lai LH (2007) Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics 23:2218–2225

    Article  CAS  Google Scholar 

  35. Gossert AD, Bonjour S, Lysek DA, Fiorito F, Wuthrich K (2005) Prion protein NMR structures of elk and of mouse/elk hybrids. Proc Natl Acad Sci USA 102:646–650

    Article  CAS  Google Scholar 

  36. Gorfe AA, Caflisch A (2007) Ser170 controls the conformational multiplicity of the loop 166–175 in prion proteins: implication for conversion and species barrier. FASEB J 21:3279–3287

    Article  CAS  Google Scholar 

  37. Wiltzius JJW, Landau M, Nelson R, Sawaya MR, Apostol MI, Goldschmidt L, Soriaga AB, Cascio D, Rajashankar K, Eisenberg D (2009) Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol 16:973–978

    Article  CAS  Google Scholar 

  38. Zhang JP (2004) Derivative-free hybrid methods in global optimization and their applications, PhD thesis, The University of Ballarat, Australia

Download references

Acknowledgments

The author thanks Dr. Zhuqing Zhang (Peking University, China) for his help in preparing Fig. 4. The author appreciates the Editor-in-Chief for his suggestions and the anonymous referees for their numerous insightful comments, which have greatly improved this paper. Last, but not least, thanks go to Dr. Judy-Anne Osborn of the Australian National University and staff of Springer (http://www.springer.com/) for their help in improving my English of this paper. This paper is dedicated to the memory of my PhD supervisor Professor Alex M. Rubinov; the hybrid global and local optimization search strategy [38] of this paper was learned from him and Professor Adil M. Bagirov, another PhD supervisor of mine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiapu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J. Optimal molecular structures of prion AGAAAAGA amyloid fibrils formatted by simulated annealing. J Mol Model 17, 173–179 (2011). https://doi.org/10.1007/s00894-010-0691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0691-y

Keywords

Navigation