Journal of Molecular Modeling

, Volume 16, Issue 9, pp 1441–1448 | Cite as

A density functional study towards substituent effects on anion sensing with urea receptors

Original Paper

Abstract

Effects of substituents on anion binding in different urea based receptors have been examined using density functional (B3LYP/6-311+G**) level of theory. The complexes formed by a variety of substituted urea with a halide anion (fluoride) and an oxy-anion (acetate) have been calculated. The stronger complexes were predicted for receptors with fluoride ion than that of acetate ion, however, in water the preference was found to be reversed. The pKa calculations showed the preferred sites of deprotonation for positional isomers, while interacting with anions. The position of the substituent in the receptor, however, could change the preferred sites of deprotonation compared to the site predicted with pKa values.
Figure

The substituent effects on anion binding towards different urea receptors have been examined by DFT with B3LYP/6-311+G** level of theory.

Keywords

Anion binding Density functional study Receptor Substituent effect Urea 

Supplementary material

894_2010_663_MOESM1_ESM.doc (92 kb)
ESM 1(DOC 92 kb)

References

  1. 1.
    Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476CrossRefGoogle Scholar
  2. 2.
    James KB (2005) Alfred Werner revisited: the coordination chemistry of anions. Acc Chem Res 38:671–678CrossRefGoogle Scholar
  3. 3.
    Beer PD, Gale PA (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew Chem Int Ed 40:486–516CrossRefGoogle Scholar
  4. 4.
    Bondy CRS, Loeb J (2003) Amide based receptors for anions. Coord Chem Rev 240:77–99Google Scholar
  5. 5.
    Choi K, Hamilton AD (2003) Macrocyclic anion receptors based on directed hydrogen bonding interactions. Coord Chem Rev 240:101–110Google Scholar
  6. 6.
    Suksai C, Tuntulani T (2003) Chromogenic anion sensors. Chem Soc Rev 32:192–202CrossRefGoogle Scholar
  7. 7.
    Beer PD (1998) Transition-metal receptor systems for the selective recognition and sensing of anionic guest species. Acc Chem Res 31:71–80CrossRefGoogle Scholar
  8. 8.
    Gale PA, Quesada R (2006) Anion coordination and anion-templated assembly: Highlights from 2002 to 2004. Coord Chem Rev 250:3219–3244CrossRefGoogle Scholar
  9. 9.
    Pérez-Ruiz R, Diaz Y, Goldfuss B, Dirk H, Meerholzb K, Griesbeck AG (2009) Fluoride recognition by a chiral urea receptor linked to a phthalimide chromophore. Org Biomol Chem 7:3499–3504CrossRefGoogle Scholar
  10. 10.
    Kang SO, Day VW, James KB (2009) The influence of amine functionalities on anion binding in polyamide-containing macrocycles. Org Lett 11:3654–3657CrossRefGoogle Scholar
  11. 11.
    Chakrabarti P (1993) Anion binding sites in protein structures. J Mol Biol 234:463–482CrossRefGoogle Scholar
  12. 12.
    Ani S, Ferraroni M (1997) In: Bianchi A, James KB, Garcia-Espana E (eds) Supramolecular chemistry of anions, 1st edn. Wiley, New York, pp 63–78Google Scholar
  13. 13.
    Gale PA (2004) In: Atwood JL, Steed JW (eds) The encyclopedia of supramolecular chemistry. Dekker, New York, pp 31–41Google Scholar
  14. 14.
    Lee DH, Im JH, Lee JH, Hong JI (2002) A new fluorescent fluoride chemosensor based on conformational restriction of a biaryl fluorophore. Tetrahedron Lett 43:9637–9640CrossRefGoogle Scholar
  15. 15.
    Kim SK, Yoon J (2002) A new fluorescent PET chemosensor for fluoride ions. Chem Commun 7:770–771CrossRefGoogle Scholar
  16. 16.
    Nishizawa S, Kato R, Hayashita T, Teramae N (1998) Anion sensing by a thiourea based chromoionophore via hydrogen bonding. Anal Sci 14:595–597CrossRefGoogle Scholar
  17. 17.
    Kim YJ, Kwak H, Lee SJ, Lee JS, Kwom HJ, Nam SH, Lee K, Kim C (2006) Urea/thiourea-based colorimetric chemosensors for the biologically important ions: efficient and simple sensors. Tetrahedron 62:9635–9640CrossRefGoogle Scholar
  18. 18.
    Pfeffer FM, Gunnalaugsson T, Jensen P, Kruger PE (2005) Anion recognition using preorganized thiourea functionalized [3]Polynorbornane Receptors. Org Lett 7:5357–5360CrossRefGoogle Scholar
  19. 19.
    Beer PD, Davis JJ, Drillsma-Milgrom DA, Szemes F (2002) Anion recognition and redox sensing amplification by self-assembled monolayers of 1,1-bis(alkyl-N-amido)ferrocene. Chem Commun 16:1716–1717CrossRefGoogle Scholar
  20. 20.
    Kwon JY, Jang YJ, Kim SK, Lee KH, Kim JS, Yoon J (2004) Unique hydrogen bonds between 9-Anthracenyl hydrogen and anions. J Org Chem 69:5155–5157CrossRefGoogle Scholar
  21. 21.
    Li C, Munenori N, Masayuki T, Shinkai S (2005) A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP. Angew Chem Int Ed 44:6371–6374CrossRefGoogle Scholar
  22. 22.
    Kim SK, Singh NJ, Kim SJ, Swamy KMK, Kim SH, Lee KH, Kim KS, Yoon J (2005) Anthracene derivatives bearing two urea groups as fluorescent receptors for anions. Tetrahedron 61:4545–4550CrossRefGoogle Scholar
  23. 23.
    Jose DA, Kumar DK, Ganguly B, Das A (2007) Rugby-Ball-Shaped Sulfate−Water−Sulfate adduct encapsulated in a neutral molecular receptor capsule. Inorg Chem 46:5817–5819CrossRefGoogle Scholar
  24. 24.
    Sessler JL, Gale PA, Cho WS (2006) In: Stoddart JF (ed) Anion receptor chemistry (monographs in supramolecular chemistry). Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  25. 25.
    Xu G, Tarr MA (2004) A novel fluoride sensor based on fluorescence enhancement. Chem Commun 9:1050–1051CrossRefGoogle Scholar
  26. 26.
    Cho EJ, Ryu BJ, Lee YJ, Nam KC (2005) Visible colorimetric fluoride ion sensors. Org Lett 13:2607–2609CrossRefGoogle Scholar
  27. 27.
    Kato R, Nishizawa S, Hayashita T, Teramae NA (2001) A thiourea-based chromoionophore for selective binding and sensing of acetate. Tetrahedron Lett 42:5053–5056CrossRefGoogle Scholar
  28. 28.
    Brooks SJ, Gale PA, Light ME (2006) Anion-binding modes in a macrocyclic amidourea. Chem Commun 41:4344–4346CrossRefGoogle Scholar
  29. 29.
    Varghese R, George SJ, Ajayaghosh A (2005) Anion induced modulation of self-assembly and optical properties in urea end-capped oligo(p-phenylenevinylene)s. Chem Commun 5:593–595CrossRefGoogle Scholar
  30. 30.
    Kwon JY, Singh NJ, Kim H, Kim SK, Yoon J (2004) Fluorescent GTP-sensing in aqueous solution of physiological pH. J Am Chem Soc 126:8892–8893CrossRefGoogle Scholar
  31. 31.
    Turner DR, Paterson MJ, Steed JW (2006) A conformationally flexible, urea-based tripodal anion receptor: Solid-state, solution, and theoretical studies. J Org Chem 71:1598–1608CrossRefGoogle Scholar
  32. 32.
    Cho EJ, Moon JW, Ko SW, Lee JY, Kim SK, Yoon J, Nam KC (2003) A new fluoride selective fluorescent as well as Chromogenic Chemosensor Containing a Naphthalene Urea Derivative. J Am Chem Soc 125:12376–12377CrossRefGoogle Scholar
  33. 33.
    Lee JY, Cho EJ, Mukamel S, Nam KC (2004) Efficient fluoride-selective fluorescent host: Experiment and theory. J Org Chem 69:943–950CrossRefGoogle Scholar
  34. 34.
    Oton F, Tarraga F, Velasco MD, Espinosa A, Molina P (2004) A new fluoride selective electrochemical and fluorescent chemosensor based on a ferrocene–naphthalene dyad. Chem Commun 14:1658–1659CrossRefGoogle Scholar
  35. 35.
    Kondo SI, Nagamine M, Yano Y (2003) Synthesis and anion recognition properties of 8, 8′-dithioureido-2, 2′-binaphthalene. Tetrahedron Lett 44:8801–8804CrossRefGoogle Scholar
  36. 36.
    Xie H, Yi S, Yang X, Wu S (1999) Study on host–guest complexation of anions based on a tripodal naphthylurea derivative. New J Chem 23:1105–1110CrossRefGoogle Scholar
  37. 37.
    Gunnlaugsson T, Davis AP, Hussey GM, Tierney J, Glynn M (2004) Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors. Org Biomol Chem 2:1856–1863CrossRefGoogle Scholar
  38. 38.
    Zeng ZY, He YB, Wu JL, Wei LH, Liu X, Meng LZ, Yang X, (2004) Synthesis of two branched fluorescent receptors and their binding properties for dicarboxylate anions. Eur J Org Chem 2888–2893Google Scholar
  39. 39.
    Wallace KJ, Belcher WJ, Turner DR, Syed KF, Steed JW (2003) Slow anion exchange, conformational equilibria, and fluorescent sensing in venus flytrap aminopyridinium-based anion hosts. J Am Chem Soc 125:9699–9715CrossRefGoogle Scholar
  40. 40.
    Kim SK, Singh NJ, Kim SJ, Kim HG, Kim JK, Lee JW, Kim KS, Yoon J (2003) New fluorescent photoinduced electron transfer chemosensor for the recognition of H2PO4-. Org Lett 5:2083–2086CrossRefGoogle Scholar
  41. 41.
    Yoon J, Kim SK, Singh KN, Lee JW, Yang YJ, Chellappan K, Kim KS (2004) Highly effective fluorescent sensor for H2PO4-. J Org Chem 69:581–583CrossRefGoogle Scholar
  42. 42.
    Liu WX, Jiang YB (2007) N-Amidothiourea based PET chemosensors for anions. Org Biomol Chem 5:1771–1775CrossRefGoogle Scholar
  43. 43.
    Liao JH, Chen CT, Fang JM (2002) A novel phosphate chemosensor utilizing anion-induced fluorescence change. Org Lett 4:561–564CrossRefGoogle Scholar
  44. 44.
    Kuo LJ, Liao JH, Chen CT, Huan CH, Chen CS, Fang JM (2003) Two-arm ferrocene amide compounds: Synclinal conformations for selective sensing of dihydrogen phosphate ion. Org Lett 5:1821–1824CrossRefGoogle Scholar
  45. 45.
    Nishizawa S, Kaneda H, Uchida T, Teramae N (1998) Anion sensing by a donor–spacer–acceptor system: an intra-molecular exciplex emission enhanced by hydrogen bond-mediated complexation. J Chem Soc Perkin Trans 2:2325–2328Google Scholar
  46. 46.
    Nishizawa S, Kato R, Teramae N (1999) Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidinium receptor. J Am Chem Soc 121:9463–9464CrossRefGoogle Scholar
  47. 47.
    Schazmann B, Alhashimy N, Diamond D (2006) Chloride selective Calix[4]arene optical sensor combining urea functionality with pyrene excimer transduction. J Am Chem Soc 128:8607–8614CrossRefGoogle Scholar
  48. 48.
    Jose DA, Kumar DK, Ganguly B, Das A (2004) Efficient and simple colorimetric fluoride ion sensor based on receptors having urea and thiourea binding sites. Org Lett 6:3445–3448CrossRefGoogle Scholar
  49. 49.
    Jose DA, Kumar DK, Ganguly B, Das A (2005) Urea and thiourea based efficient colorimetric sensors for oxyanions. Tatrahedron Lett 46:5343–5346CrossRefGoogle Scholar
  50. 50.
    Jimenez D, Manez RM, Sancenon F, Soto J (2002) Selective fluoride sensing using colorimetric reagents containing anthraquinone and urea or thiourea binding sites. Tatrahedron Lett 43:2823–2825CrossRefGoogle Scholar
  51. 51.
    Lo KKW, Lau JSY, Fong VWY, Zhu N (2004) Electrochemical, photophysical, and anion-binding properties of a luminescent rhenium(I) polypyridine anthraquinone complex with a thiourea receptor. Organometallics 23:1098–1106CrossRefGoogle Scholar
  52. 52.
    Evans LS, Gale PA, Light ME, Quesada R (2006) Anion binding vs. deprotonation in colorimetric pyrrolylamidothiourea based anion sensors. Chem Commun 9:965–967CrossRefGoogle Scholar
  53. 53.
    Brooks SJ, Edwards PR, Gale PA, Light ME (2006) Carboxylate complexation by a family of easy-to-make ortho-phenylenediamine based bis-ureas: studies in solution and the solid state. New J Chem 30:65–70CrossRefGoogle Scholar
  54. 54.
    Jose DA, Kumar DK, Kar P, Verma S, Ghosh A, Ganguly B, Ghosh HN, Das A (2007) Role of positional isomers on receptor–anion binding and evidence for resonance energy transfer. Tetrahedron 63:12007–12014CrossRefGoogle Scholar
  55. 55.
    Amendola V, Esteban-goämez D, Fabbrizzi L, Licchelli M (2006) What Anions Do to N−H-Containing Receptors. Acc Chem Res 39:343CrossRefGoogle Scholar
  56. 56.
    Jose DA, Singh A, Das A, Ganguly B (2007) A density functional study towards the preferential binding of anions to urea and thiourea. Tatrahedron Lett 48:3695–3698CrossRefGoogle Scholar
  57. 57.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JRJ, Montgomery A Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc, Wallingford, CTGoogle Scholar
  58. 58.
    TITAN; Wavefunction, Inc. 18401 Von Karman Avenue, Suite 370, Irvine, CA 92612, USA, Schrodinger, Inc., 1500 SW First Avenue, Suite 1180, Portland, OR 97201, USAGoogle Scholar
  59. 59.
    Jorgensen WL (1989) Free energy calculations: a breakthrough for modeling organic chemistry in solution. Acc Chem Res 22:184–189CrossRefGoogle Scholar
  60. 60.
    Peräkylä M (1998) A model study of the enzyme-catalyzed cytosine methylation using ab initio quantum mechanical and density functional theory calculations: pKa of the cytosine N3 in the intermediates and transition states of the reaction. J Am Chem Soc 120:12895–12902CrossRefGoogle Scholar
  61. 61.
    Kumar VP, Ganguly B, Bhattacharya S (2004) Synthesis of nonracemic allylic hydroxy phosphonates via alkene cross metathesis. J Org Chem 69:8634–8642CrossRefGoogle Scholar
  62. 62.
    Liptak MD, Shields GC (2001) Accurate pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. J Am Chem Soc 123:7314–7319CrossRefGoogle Scholar
  63. 63.
    Tomasi J, Persico M (1994) Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094CrossRefGoogle Scholar
  64. 64.
    Jang YH, Sowers LC, Çain T, Goddard WA III (2001) First principles calculation of pKa values for 5-substituted uracils. J Phys Chem A 105:274–280CrossRefGoogle Scholar
  65. 65.
    Li Q-S, Zhao J-F, Xie Y, Shaefer HF (2002) Electron affinities, molecular structures, and thermochemistry of the fluorine, chlorine and bromine substituted methyl radicals. Mol Phys 100:3615–3648CrossRefGoogle Scholar
  66. 66.
    Worsham JE, Levy HA, Peterson SW (1957) The positions of hydrogen atoms in urea by neutron diffraction. Acta Crystallogr A 10:319–323CrossRefGoogle Scholar
  67. 67.
    Kontoyianni M, Bowen P (1992) An ab initio and molecular mechanical investigation of ureas and amide derivatives. J Comput Chem 13:657–666CrossRefGoogle Scholar
  68. 68.
    Meier RJ, Coussens B (1992) The molecular structure of the urea molecule: Is the minimum energy structure planar? J Mol Struct 253:25–33Google Scholar
  69. 69.
    Gobbi A, Frenking G (1993) Y-Conjugated compounds: The equilibrium geometries and electronic structures of guanidine, guanidinium cation, urea, and 1, 1-diaminoethylene. J Am Chem Soc 115:2362–2372CrossRefGoogle Scholar
  70. 70.
    Godfrey PD, Brown RD, Hunter AN (1997) The shape of urea. J Mol Struct 413:405–414CrossRefGoogle Scholar
  71. 71.
    Brown RD, Godfrey D, Storey J (1975) The microwave spectrum of urea. J Mol Spectrosc 58:445–450CrossRefGoogle Scholar
  72. 72.
    Hay BP, Firman TK, Moyer BA (2005) Structural design criteria for anion hosts: Strategies for achieving anion shape recognition through the complementary placement of urea donor groups. J Am Chem Soc 127:1810–1825CrossRefGoogle Scholar
  73. 73.
    Hay BP, Gutowski M, Dixon DA, Garza J, Vargas R, Moyer BA (2004) Structural criteria for the rational design of selective ligands: Convergent hydrogen bonding sites for the nitrate anion. J Am Chem Soc 126:7925–7934CrossRefGoogle Scholar
  74. 74.
    Gomez DE, Fabbrizzi L, Licchelli M, Monzani E (2005) Urea vs thiourea in anion recognition. Org Biomol Chem 3:1495–1500CrossRefGoogle Scholar
  75. 75.
    Boiocchi M, DelBoca L, Gomez DE, Fabbrizzi L, Licchelli M, Monazani E (2004) Nature of urea−fluoride interaction: Incipient and definitive proton transfer. J Am Chem Soc 126:16507–16514CrossRefGoogle Scholar
  76. 76.
    Amendola V, Boiocchi M, Colasson B, Fabbrizzi L (2006) Metal-controlled assembly and selectivity of a urea-based anion receptor. Inorg Chem 45:6138–6147CrossRefGoogle Scholar
  77. 77.
    Rajinikant DMB, Deshmkh K (2006) Bull Mater Sci 29:239–242CrossRefGoogle Scholar
  78. 78.
    Vincent MA, Hillier IH (2005) The solvated fluoride anion can be a good nucleophile. Chem Commun 47:5902–5903CrossRefGoogle Scholar
  79. 79.
    Ghosh T, Maiya B, Wong MW (2004) Fluoride ion receptors based on dipyrrolyl derivatives bearing electron-withdrawing groups: Synthesis, optical and electrochemical sensing, and computational studies. J Phys Chem A 108:11249–11259CrossRefGoogle Scholar
  80. 80.
    de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566CrossRefGoogle Scholar
  81. 81.
    Shao J, Lin H, Lin HK (2008) A simple and efficient colorimetric anion sensor based on a thiourea group in DMSO and DMSO–water and its real-life application. Talanta 75:1015–1020CrossRefGoogle Scholar
  82. 82.
    Hu S, Guo Y, Xu J, Shao S (2008) A selective chromogenic molecular sensor for acetate anions in a mixed acetonitrile–water medium. Org Biomol Chem 6:2071–2075CrossRefGoogle Scholar
  83. 83.
    Gunnlaugsson T, Kruger PE, Jensen P, Tierney J, PadukaAli HD, Hussey GM (2005) Colorimetric “naked eye” sensing of anions in aqueous solution. J Org Chem 70:10875–10878CrossRefGoogle Scholar
  84. 84.
    Lin Z, Ou S, Duan C, Zhang B, Bai Z (2006) Naked-eye detection of fluoride ion in water: a remarkably selective easy-to-prepare test paper. Chem Commun 2006:624–626Google Scholar
  85. 85.
    Kim Y, Gabba FP (2009) Cationic boranes for the complexation of fluoride ions in water below the 4 ppm maximum contaminant level. J Am Chem Soc 131:3363–3369CrossRefGoogle Scholar
  86. 86.
    Brodwell FG (1988) Equilibrium acidities in dimethyl sulfoxide solution. Acc Chem Res 21:456–463CrossRefGoogle Scholar
  87. 87.
    Brodwell FG, Algrim DJ, Harrelson JA (1988) The relative ease of removing a proton, a hydrogen atom, or an electron from carboxamides versus thiocarboxamides. J Am Chem Soc 110:5903–5904CrossRefGoogle Scholar
  88. 88.
    Fan E, Van Armon SA, Kincald S, Hamilton AD (1993) Molecular recognition: Hydrogen-bonding receptors that function in highly competitive solvents. J Am Chem Soc 115:369–370CrossRefGoogle Scholar
  89. 89.
    Ghosh A, Verma S, Ganguly B, Ghosh HN, Das A (2009) Influence of urea N–H acidity on receptor–anionic and neutral analyte binding in a ruthenium(II)–polypyridyl-based colorimetric sensor. Eur J Inorg Chem 17:2496–2507Google Scholar
  90. 90.
    Ghosh A, Ganguly B, Das A (2007) Urea-based ruthenium(II)-polypyridyl complex as an optical sensor for anions: Synthesis, characterization, and binding studies. Inorg Chem 46:9912–9918CrossRefGoogle Scholar
  91. 91.
    Hughes MP, Smith BD (1997) Enhanced carboxylate binding using urea and amide-based receptors with internal lewis acid coordination: A cooperative polarization effect. J Org Chem 62:4492–4499CrossRefGoogle Scholar
  92. 92.
    Meng EC, Cieplak P, Caldwell JW, Kollman PA (1994) Accurate solvation free energies of acetate and methylammonium ions calculated with a polarizable water model. J Am Chem Soc 116:12061–12062CrossRefGoogle Scholar
  93. 93.
    Blades AT, Klassen JS, Kebarle P (1995) Free energies of hydration in the gas phase of the anions of some Oxo acids of C, N, S, P, Cl, and I. J Am Chem Soc 117:10563–10571CrossRefGoogle Scholar
  94. 94.
    Meot-Ner M, WayneSieck L (1986) The ionic hydrogen bond and ion solvation. 5- OH.cntdot.cntdot.cntdot.O-bonds. Gas-phase solvation and clustering of alkoxide and carboxylate anions. J Am Chem Soc 108:7525–7529CrossRefGoogle Scholar
  95. 95.
    Wincel H (2008) Ab initio investigation of the hydration of deprotonated amino acids. J Am Soc Mass Spectrom 19:1091–1097CrossRefGoogle Scholar
  96. 96.
    Kilincekera G, Galipb H (2008) The effects of acetate ions (CH3COO) on electrochemical behavior of copper in chloride solutions. Mater Chem Phys 110:380–386CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Central Salt and Marine Chemicals Research Institute (CSIR)BhavnagarIndia

Personalised recommendations