Advertisement

Journal of Molecular Modeling

, Volume 16, Issue 6, pp 1127–1138 | Cite as

Molecular modeling of dissociative and non-dissociative chemisorption of nitrosamine on close-ended and open-ended pristine and Stone-Wales defective (5,5) armchair single-walled carbon nanotubes

  • Vithaya Ruangpornvisuti
Original Paper

Abstract

The nitrosamine adsorbed on close-ended and open-ended pristine and Stone-Wales defective (5,5) armchair single-walled carbon nanotubes (SWCNTs) was studied using the B3LYP/6-31G(d) method. Structure optimization of all possible adsorption configurations based on the combination of two nitrosamine (amino- and imino-) isomers and four types of nanotubes was carried out. The most stable configuration for the nitrosamine adsorbed on the (5,5) armchair SWCNTs was found to be dissociative chemisorption. The adsorption energies of the most stable structures of the adsorption complexes of close-ended and open-ended pristine SWCNTs with the imino isomer of nitrosamine were −127.15 and −137.14 kcal mol−1, respectively.

Figure

The nitrosamine adsorbed on close-ended and open-ended pristine and Stone-Wales defective (5,5) armchair single-walled carbon nanotubes (SWCNTs). The most stable structures of adsorption complexes with the imino-isomer of nitrosamine are close-ended pristine SWCNT (C90 cluster) and open-ended pristine SWCNT (C90H20 cluster).

Keywords

Carbon nanotubes Single-walled carbon nanotube Chemisorption Nitrosamine Pristine Stone-Wales defective Density functional theory 

Notes

Acknowledgments

This research was supported financially by the National Nanotechnology Center (NANOTEC), grant number NN-B-22-m10-10-49-18, National Science and Technology Development Agency, Thailand. This work was partially supported by the Thailand Research Fund (TRF) and the National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials.

References

  1. 1.
    IARC (1978) Some N-nitroso compounds. IARC monographs on the evaluation of carcinogenic risk of chemicals to humans, vol 17. International Agency for Research on Cancer, LyonGoogle Scholar
  2. 2.
    Gadbois DF, Ravesi EM, Lundstrom RC, Maney RS (1975) J Agric Food Chem 23:665–668CrossRefGoogle Scholar
  3. 3.
    Sen NP, Tessier L, Seaman SW, Baddoo PA (1985) J Agric Food Chem 33:264–268CrossRefGoogle Scholar
  4. 4.
    Biaudet H, Mavelle T, Debry G (1994) Food Chem Toxicol 32:417–421CrossRefGoogle Scholar
  5. 5.
    Sen NP, Seaman S (1981) J Assoc Off Anal Chem 64:1238–1242Google Scholar
  6. 6.
    Sen NP, Seaman S (1981) J Agric Food Chem 29:787–789CrossRefGoogle Scholar
  7. 7.
    Fiddler W, Pensabene JW, Kimoto WI (1981) J Food Sci 46:603–605CrossRefGoogle Scholar
  8. 8.
    Hedler L, Schurr C, Marquardt P (1979) J Am Oil Chem Soc 56:681–684CrossRefGoogle Scholar
  9. 9.
    Dellisanti A, Cerutti G, Airoldi L (1996) Bull Environ Contam Toxicol 57:16–21CrossRefGoogle Scholar
  10. 10.
    Sen NP, Seaman SW, Begeson C, Brousseau R (1996) J Agric Food Chem 44:1498–1501CrossRefGoogle Scholar
  11. 11.
    Yurchenko S, Mölder U (2005) Food Chem 89:455–463CrossRefGoogle Scholar
  12. 12.
    Fazio T, Damico JN, Howard JW, White RH, Watts JO (1971) J Agric Food Chem 19:250–253CrossRefGoogle Scholar
  13. 13.
    Sen NP, Schwinghamer LA, Donaldson BA, Miles WF (1972) J Agric Food Chem 20:1280–1281CrossRefGoogle Scholar
  14. 14.
    Yurchenko S, Mölder U (2006) Food Chem 96:325–333CrossRefGoogle Scholar
  15. 15.
    Baker LA, Su S (1998) Chem Phys 228:9–16CrossRefGoogle Scholar
  16. 16.
    Miura M, Sakamoto S, Yamagushi K, Ohwada T (2000) Tetrahedron Lett 41:3637–3641CrossRefGoogle Scholar
  17. 17.
    Reynolds C, Thomson C (1984) Int J Quantum Chem Quantum Biol Symp 11:167–181CrossRefGoogle Scholar
  18. 18.
    Crawford M-J, Klapötke TM, Liebman JF (2000) J Fluor Chem 102:119–124CrossRefGoogle Scholar
  19. 19.
    Wanno B, Ruangpornvisuti V (2006) J Mol Struct (Theochem) 766:159–164CrossRefGoogle Scholar
  20. 20.
    Wanno B, Ruangpornvisuti V (2006) J Mol Struct (Theochem) 775:113–120CrossRefGoogle Scholar
  21. 21.
    Wang C, Zhou G, Liu H, Wu J, Qiu Y, Gu BL, Duan W (2006) J Phys Chem B 110:10266–10271CrossRefGoogle Scholar
  22. 22.
    Bettinger HF (2005) J Phys Chem B 109:6922–6924CrossRefGoogle Scholar
  23. 23.
    Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 434:86–91CrossRefGoogle Scholar
  24. 24.
    Akdim B, Kar T, Duan X, Pachter R (2007) Chem Phys Lett 445:281–287CrossRefGoogle Scholar
  25. 25.
    Dinadayalane TC, Kaczmarek A, Łukaszewicz J, Leszczynski J (2007) J Phys Chem C 111:7376–7383CrossRefGoogle Scholar
  26. 26.
    Kaczmarek A, Dinadayalane TC, Łukaszewicz J, Leszczynski J (2007) Int J Quantum Chem 107:2211–2219CrossRefGoogle Scholar
  27. 27.
    Wanno B, Du AJ, Ruangpornvisuti V, Smith SC (2007) Chem Phys Lett 436:218–223CrossRefGoogle Scholar
  28. 28.
    Wanbayor R, Ruangpornvisuti V (2008) Chem Phys Lett 441:127–131CrossRefGoogle Scholar
  29. 29.
    Wanbayor R, Ruangpornvisuti V (2008) Carbon 46:12–18CrossRefGoogle Scholar
  30. 30.
    Pinisakul A, Kritayakornupong C, Ruangpornvisuti V (2008) J Mol Model 14:1035–1041CrossRefGoogle Scholar
  31. 31.
    Shen B, Ma LL, Zhu JH, Xu Q-H (2000) Chem Lett 29:380–381CrossRefGoogle Scholar
  32. 32.
    Becke D (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  33. 33.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2006) Gaussian 03, Revision D.02. Gaussian Inc, WallingfordGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations