Journal of Molecular Modeling

, Volume 16, Issue 5, pp 975–991 | Cite as

Site-directed fragment-based generation of virtual sialic acid databases against influenza A hemagglutinin

Original Paper


In this study fragment-based drug design is combined with molecular docking simulation technique, to design databases of virtual sialic acid (SA) analogues with new substitutions at C2, C5 and C6 positions of SA scaffold. Using spaces occupied by C2, C5 and C6 natural moieties of SA when bound to hemagglutinin (HA) crystallographic structure, new fragments that are commercially available were docked independently in all the pockets. The oriented fragments were then connected to the SA scaffold with or without incorporation of linker molecules. The completed analogues were docked to the whole SA binding site to estimate their binding conformations and affinities, generating three databases of HA-bound SA analogues. Selected new analogues showed higher estimated affinities than the natural SA when tested against H3N2, H5N1 and H1N1 subtypes of influenza A. An improvement in the binding energies indicates that fragment-based drug design when combined with molecular docking simulation is capable to produce virtual analogues that can become lead compound candidates for anti-flu drug discovery program.


Fragment-based molecular design Hemagglutinin Influenza A Molecular docking Sialic acid analogues 



We would like to acknowledge Mr. Andreas Meyer from ChemBridge Corporation. Mr Al-Qattan appreciates Universiti Sains Malaysia for supporting this project through a research fellowship scheme.


  1. 1.
    Varki NM, Varki A (2007) Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 87:851–857CrossRefGoogle Scholar
  2. 2.
    Schauer R, Kamerling JP (1997) Chemistry, biochemistry and biology of sialic acids. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) New comprehensive biochemistry, vol 29b. Elsevier Science BV, Amsterdam, The Netherlands, pp 243–402Google Scholar
  3. 3.
    Schauer R (1982) Chemistry, metabolism and biological functions of sialic acids. Adv Carbohydr Chem Biochem 40:131–234CrossRefGoogle Scholar
  4. 4.
    Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Ann Rev Biochem 69:531–569CrossRefGoogle Scholar
  5. 5.
    Air GM, Laver WG (1989) The neuraminidase of influenza virus. Proteins: Struc Funct Genet 6:341–356CrossRefGoogle Scholar
  6. 6.
    Ward CW, Dopheide TA (1981) Amino acid sequence and oligosaccharide distribution of the haemagglutinin from an early Hong Kong influenza virus variant A/Aichi/2/68 (X-3 1). Biochem J 193:953–962Google Scholar
  7. 7.
    Nobusawa E, Aoyama T, Kato H, Suzuki Y, Tateno Y, Nakajima K (1991) Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182:475–485CrossRefGoogle Scholar
  8. 8.
    Von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Phan TV, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423CrossRefGoogle Scholar
  9. 9.
    Weis W, Brown JH, Cusack S, Paulson JC, Skehel JJ, Wiley DC (1988) Structure of the influenza virus hemagglutinin complexed with its receptor, sialic acid. Nature 333:426–431CrossRefGoogle Scholar
  10. 10.
    Sauter NK, Hanson JE, Glick GD, Brown JH, Crowther RL, Park SJ, Skehel JJ, Wiley DC (1992) Binding of influenza virus hemagglutinin to analogs of its cells urface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31:9609–9621CrossRefGoogle Scholar
  11. 11.
    Sauter NK, Glick GD, Crowther RL, Park SJ, Eisen MB, Skehel JJ, Knowles JR, Wiley DC (1992) Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin. Proc Nat Acad Sci USA 89:324–228CrossRefGoogle Scholar
  12. 12.
    Pritchett TJ (1987) Receptor analogue inhibitors of influenza virus adsorption and infection. (thesis), Univ of California, Los AngelesGoogle Scholar
  13. 13.
    Kelm S, Paulson JC, Rose U, Brossmer R, Schmid W, Bandgar BP, Schreiner E, Hartmann M, Zbiral E (1992) Use of sialic acid analogues to define functional groups involved in binding to the influenza virus hemagglutinin. Eur J Biochem 205:147–153CrossRefGoogle Scholar
  14. 14.
    Toogood PL, Galliker PK, Glick GD, Knowles JR (1991) Monovalent sialosides that bind tightly to influenza A virus. J Med Chem 34:3138–3140CrossRefGoogle Scholar
  15. 15.
    Sauter NK, Bednarski MD, Wurzburg BA, Hanson JE, Whitesides GM, Skehel JJ, Wiley DC (1989) Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500 MHz proton nuclear magnetic resonance study. Biochemistry 28:8388–8396CrossRefGoogle Scholar
  16. 16.
    Machytka D, Kharitonenkov I, Isecke R, Hetterich P, Brossmer R, Klein RA, Klenk HD, Egge H (1993) Methyl alpha-glycoside of N-thioacetyl-D-neuraminic acid: a potential inhibitor of influenza A virus. A 1H NMR study. FEBS Lett 334:117–120CrossRefGoogle Scholar
  17. 17.
    Hurt AC, Ernest J, Deng Y-M, Iannello P, Besselaar TG, Birch C, Buchy P, Chittaganpitch M, Chiu S-C, Dwyer D, Guigon A, Harrower B, Kei IP, Kok T, Lin C, McPhie K, Mohd A, Olveda R, Panayotou T, Rawlinson W et al (2009) Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antivir Res 83:90–93CrossRefGoogle Scholar
  18. 18.
    Mohammed Noor Al-qattan, Mohd Nizam Mordi, Docking of sialic acid analogues against influenza A hemagglutinin : A correlational study between experimentally measured and computationally estimated affinities. (Accepted for Publication, J Mol Mod)Google Scholar
  19. 19.
    Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner PJ (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784CrossRefGoogle Scholar
  20. 20.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  21. 21.
    Wang R, Gao Y, Lai L (2000) LigBuilder: a multi-purpose program for structure-based drug design. J Mol Model 6:498–516CrossRefGoogle Scholar
  22. 22.
    Pearlman DA, Murcko MA (1996) CONCERTS: dynamic connection of fragments as an approach to de novo ligand design. J Med Chem 39:1651–1663CrossRefGoogle Scholar
  23. 23.
    Lewis RA, Roe DC, Huang C, Ferrin TE, Langridge R, Kuntz ID (1992) Automated site-directed drug design using molecular lattices. J Mol Graphics 10:66–78CrossRefGoogle Scholar
  24. 24.
    Böhm H-J (1992) The computer program LUDI A new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78CrossRefGoogle Scholar
  25. 25.
    Moon JB, Howe WJ (1991) Computer design of bioactive molecules: A method for receptor-based de novo ligand design. Proteins: Struct, Funct, Genet 11:314–328CrossRefGoogle Scholar
  26. 26.
    Höltje H-D, Sippl W, Rognan D, Folkers G (1997) Molecular modeling: basic principles and applications, 3rd edn. VCH Verlagsgesellschaft GmbH, Weinheim, Germany, pp 192Google Scholar
  27. 27.
    Clark DE, Frenkel D, Levy SA, Li J, Murray CW, Robson B, Waszkowycz B, Westhead DR (1995) PRO_LIGAND: an approach to de novo molecular design. 1. Application to the design of organic molecules. J Comput Aided Mol Des 9:13–32CrossRefGoogle Scholar
  28. 28.
    Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2003) X-ray structure of the hemagglutinin of a potential H3 avian progenitor of the 1968 Hong Kong pandemic influenza virus. Virology 309:209–218CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Centre for Drug ResearchUniversiti Sains MalaysiaMindenMalaysia

Personalised recommendations