Journal of Molecular Modeling

, Volume 16, Issue 4, pp 645–657

The 3D structures of G-Quadruplexes of HIV-1 integrase inhibitors: molecular dynamics simulations in aqueous solution and in the gas phase

Original Paper

Abstract

The unimolecular G-quadruplex structures of d(GGGTGGGTGGGTGGGT) (G1) and d(GTGGTGGGTGGGTGGGT) (G2) are known as the potent nanomolar HIV-1 integrase inhibitors, thus investigating the 3D structures of the two sequences is significant for structure-based rational anti-HIV drug design. In this research, based on the experimental data of circular dichroism (CD) spectropolarimetry and electrospray ionization mass spectrometry (ESI-MS), the initial models of G1 and G2 were constructed by molecular modeling method. The modeling structures of G1 and G2 are intramolecular parallel-stranded quadruplex conformation with three guanine tetrads. Particularly, the structure of G2 possesses a T loop residue between the first and the second G residues that are the component of two adjacent same-stranded G-tetrad planes. This structure proposed by us has a very novel geometry and is different from all reported G-quadruplexes. The extended (35 ns) molecular dynamic (MD) simulations for the models indicate that the G-quadruplexes maintain their structures very well in aqueous solution whether the existence of K+ or NH4+ in the central channel. Furthermore, we perform 500 ns MD simulations for the models in the gas phase. The results show that all the ion-G-quadruplex complexes are maintained during the whole simulations, despite the large magnitude of phosphate-phosphate repulsions. The gas phase MD simulations provide a good explanation to ESI-MS experiments. Our 3D structures for G1 and G2 will assist in understanding geometric formalism of G-quadruplex folding and may be helpful as a platform for rational anti-HIV drug design.

Keywords

Guadruplex Molecular dynamic simulation Molecular modeling Principal components analysis Stability 

Supplementary material

894_2009_592_MOESM1_ESM.doc (629 kb)
ESM 1(DOC 629 kb)

References

  1. 1.
    Sundquist WI, Klug A (1989) Nature 342:825–829CrossRefGoogle Scholar
  2. 2.
    Henderson E, Hardin CC, Walk SK, Tinoco I, Blackburn EH (1987) Cell 51:899–908CrossRefGoogle Scholar
  3. 3.
    Williamson JR, Raghuraman MK, Cech TR (1989) Cell 59:871–880CrossRefGoogle Scholar
  4. 4.
    Gellert M, Lipsett MN, Davies DR (1962) Proc Natl Acad Sci USA 48:2013–2018CrossRefGoogle Scholar
  5. 5.
    Sundquist WI, Klug A (1989) Nature 342:825–829CrossRefGoogle Scholar
  6. 6.
    Sen D, Gilbert W (1988) Nature 344:410–414CrossRefGoogle Scholar
  7. 7.
    Todd AK, Johnston M, Neidle S (2005) Nucleic Acids Res 33:2901–2907CrossRefGoogle Scholar
  8. 8.
    Huppert JL, Balasubramanian S (2005) Nucleic Acids Res 33:2908–2916CrossRefGoogle Scholar
  9. 9.
    Huppert JL, Balasubramanian S (2007) Nucleic Acids Res 35:406–413CrossRefGoogle Scholar
  10. 10.
    Rando RF, Ojwang J, Elbaggari A, Reyes GR, Tinder R, McGrath MS, Hogan ME (1995) J Biol Chem 270:1754–1760CrossRefGoogle Scholar
  11. 11.
    Wyatt JR, Vickers TA, Roberson JL, Buckheit RW , Klimkait T, DeBaets E, Davis PW, Rayner B, Imbach JL, Ecker DJ (1994) Proc Natl Acad Sci USA 91:1356–1360CrossRefGoogle Scholar
  12. 12.
    Jing N, Gao X, Rando RF, Hogan ME (1997) J Biomol Struct Dyn 15:573–585Google Scholar
  13. 13.
    De Soultrait VR, Lozach PY, Altmeyer R, Tarrago-Litvak L, Litvak S, Andreola ML (2002) J Mol Biol 324:195–203CrossRefGoogle Scholar
  14. 14.
    Jing N, Hogan ME (1998) J Biol Chem 273:34992–34999CrossRefGoogle Scholar
  15. 15.
    Williamson JR (1994) Annu ReV Biophys Biomol Struct 23:703–730CrossRefGoogle Scholar
  16. 16.
    Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Nucleic Acids Res 34:2723–2735CrossRefGoogle Scholar
  17. 17.
    Balagurumoorthy P, Brahmachari SK (1994) J Biol Chem 269:21858–21869Google Scholar
  18. 18.
    Balagurumoorthy P, Brahmachari SK, Mohanty D, Bansal M, Sasisekharan V (1992) Nucleic Acids Res 20:4061–4067CrossRefGoogle Scholar
  19. 19.
    Jin R, Gaffney BL, Wang C, Jones RA, Breslauer KJ (1992) Proc Natl Acad Sci USA 89:8832–8836CrossRefGoogle Scholar
  20. 20.
    Rezler EM, Seenisamy J, Bashyam S, Kim MY, White E, Wilson WD, Hurley LH (2005) J Am Chem Soc 127:9439–9447CrossRefGoogle Scholar
  21. 21.
    Balagurumoorthy P, Brahmachari SK, Mohanty D, Bansal M, Sasisekharan V (1992) Nucleic Acids Res 20:4061–4067CrossRefGoogle Scholar
  22. 22.
    Giraldo R, Suzuki M, Chapman L, Rhodes D (1994) Proc Natl Acad Sci USA 91:7658–7662CrossRefGoogle Scholar
  23. 23.
    Berova N, Nakanishi K, Woody RW (2000) Circular dichroism: principles and applications. Wiley-VCH, New York Google Scholar
  24. 24.
    Jing N, Rando RF, Pommier Y, Hogan ME (1997) Biochemistry 36:12498–12505CrossRefGoogle Scholar
  25. 25.
    Hardin CC, Perry AG, White K (2001) Biopolymers 56:147–194CrossRefGoogle Scholar
  26. 26.
    Porumb H, Monnot M, Fermandjian S (2002) Electrophoresis 23:1013–1020CrossRefGoogle Scholar
  27. 27.
    Dapic V, Abdomerovic V, Marrington R, Peberdyl J, Rodgerl A, Trent JO, Bates PJ (2003) Nucleic Acids Res 31:2097–2107CrossRefGoogle Scholar
  28. 28.
    Hazel P, Huppert J, Balasubramanian S, Neidle S (2004) J Am Chem Soc 126:16405–16415CrossRefGoogle Scholar
  29. 29.
    Rachwal PA, Brown T, Fox KR (2007) Biochemistry 46:3036–3044CrossRefGoogle Scholar
  30. 30.
    Bugaut A, Balasubramanian S (2008) Biochemistry 47:689–697CrossRefGoogle Scholar
  31. 31.
    Seenisamy J, Rezler EM, Powell TJ, Tye D, Gokhale V, Joshi CS, Siddiqui-Jain A, Hurley LH (2004) J Am Chem Soc 126:8702–8709CrossRefGoogle Scholar
  32. 32.
    Li H, Yuan G, Du D (2008) J Am Soc Mass Spectrom 19:550–559CrossRefGoogle Scholar
  33. 33.
    Ren J, Qu X, Trent JO, Chaires JB (2002) Nucleic Acids Res 30:2307–2315CrossRefGoogle Scholar
  34. 34.
    Shammel-Baker E, Lee JT, Sessler JL, Bowers MT (2006) J Am Chem Soc 128:2641–2648CrossRefGoogle Scholar
  35. 35.
    Gabelica V, Teulade-Fichou MP, De Pauw E, Bowers MT (2007) J Am Chem Soc 129:895–904CrossRefGoogle Scholar
  36. 36.
    Rueda M, Kalko SG, Luque FJ, Orozco M (2003) J Am Chem Soc 125:8007–8014CrossRefGoogle Scholar
  37. 37.
    Rueda M, Luque FJ, Orozco M (2005) J Am Chem Soc 127:11690–11698CrossRefGoogle Scholar
  38. 38.
    Rueda M, Luque FJ, Orozco M (2006) J Am Chem Soc 128:3608–3619CrossRefGoogle Scholar
  39. 39.
    Gale DC, Smith RD (1995) J Am Soc Mass Spectrom 6:1154–1164CrossRefGoogle Scholar
  40. 40.
    Hofstadler SA, Griffey RH (2001) Chem ReV 101:377–390CrossRefGoogle Scholar
  41. 41.
    Gabelica V, De Pauw E (2002) Int J Mass Spectrom 219:151–159CrossRefGoogle Scholar
  42. 42.
    Gabelica V, De Pauw E, Rosu F (1999) J Mass Spectrom 34:1328–1337CrossRefGoogle Scholar
  43. 43.
    Wan KX, Shibue T, Gro ML (2000) J Am Chem Soc 122:300–307CrossRefGoogle Scholar
  44. 44.
    Gabelica V, Rosu R, Houssier C, De Pauw E (2000) Rapid Commun Mass Spectrom 14:464–467CrossRefGoogle Scholar
  45. 45.
    Rosu F, Valerica G, Houssier C, De Pauw E (2002) Nucleic Acids Res 30:e82CrossRefGoogle Scholar
  46. 46.
    Gabelica V, De Pauw E (2001) J Mass Spectrom 36:397–402CrossRefGoogle Scholar
  47. 47.
    Sponer J, Spackova N (2007) Methods 43:278–290CrossRefGoogle Scholar
  48. 48.
    Phillips K, Dauter Z, Murchie AIH, Lilley DMJ, Luisi B (1997) J MOL Biol 273:171–182CrossRefGoogle Scholar
  49. 49.
    Ambrus A, Chen D, Dai J, Jones RA, Yang D (2005) Biochemistry 44:2048–2058CrossRefGoogle Scholar
  50. 50.
    Price DJ, Brooks CL (2004) J Chem Phys 121:10096–10103CrossRefGoogle Scholar
  51. 51.
    Darden T, Perera L, Li L, Pedersen L (1999) Structure 7:R55–R60CrossRefGoogle Scholar
  52. 52.
    Hauptman HA (1997) Methods Enzymol 277:3–13CrossRefGoogle Scholar
  53. 53.
    Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Biophys J 92:3817–3829CrossRefGoogle Scholar
  54. 54.
    Perez A, Luque FJ, Orozco M (2007) J Am Chem Soc 129:14739–14745CrossRefGoogle Scholar
  55. 55.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker Ross C, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San FranciscoGoogle Scholar
  56. 56.
    Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  57. 57.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:27–38Google Scholar
  58. 58.
    Amadei A, Linssen AB, Berendsen HJ (1993) Proteins 17:412–425CrossRefGoogle Scholar
  59. 59.
    Haider S, Parkinson GN, Neidle S (2008) Biophys J 95:296–311CrossRefGoogle Scholar
  60. 60.
    Kitao A, Go N (1999) Curr Opin Struct Biol 9:164–169CrossRefGoogle Scholar
  61. 61.
    Hess B (2000) Phys Rev E 62:8438–8448CrossRefGoogle Scholar
  62. 62.
    Hess B (2002) Phys Rev E 65(3 Part 1):031910CrossRefGoogle Scholar
  63. 63.
    Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Nucleic Acids Res 34:5402–5415CrossRefGoogle Scholar
  64. 64.
    Smargiasso N, Rosu F, Hsia W, Colson P, Shammel-Baker E, Bowers MT, De Pauw E, Gabelica V (2008) J Am Chem Soc 130:10208–1021CrossRefGoogle Scholar
  65. 65.
    Fadrna E, Spackova N, Sarzynska J, Koca J, Orozco M, Cheatham TE, Kulinski T, Sponer J (2009) J Chem Theor Comput. doi:10.1021/ct900200k Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ming-Hui Li
    • 1
  • Yi-Han Zhou
    • 1
  • Quan Luo
    • 1
  • Ze-Sheng Li
    • 1
  1. 1.Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations