Journal of Molecular Modeling

, Volume 16, Issue 3, pp 567–576 | Cite as

Polarizability rescaling and atom-based Thole scaling in the CHARMM Drude polarizable force field for ethers

  • Christopher M. Baker
  • Alexander D. MacKerellJr.
Original Paper

Abstract

Within the CHARMM polarizable force field based on the classical Drude oscillator, atomic polarizabilities are derived via fitting to ab initio calculated data on isolated gas phase molecules, with an empirical scaling factor applied to account for differences between the gas and condensed phases. In the development of polarizable models for the ethers, a polarizability scaling factor of 0.7 was previously applied [Vorobyov et al. J Comput Chem 3:1120–1133, 2007]. While the resulting force field models gave good agreement with a variety of experimental data, they systematically underestimated the liquid phase dielectric constants. Here, a new CHARMM polarizable model is developed for the ethers, employing a polarizability scaling factor of 0.85 and including atom-based Thole scale factors recently introduced into the CHARMM Drude polarizable force field [Harder et al. J Phys Chem B 112:3509-3521, 2008]. The new model offers a significant improvement in the reproduction of liquid phase dielectric constants, while maintaining the good agreement of the previous model with all other experimental and quantum mechanical data, highlighting the sensitivity of liquid phase properties to the choice of atomic polarizability parameters.

Keywords

CHARMM Dielectric constant Ethers Force field Heat of vaporization Polarizable Thole 

Supplementary material

894_2009_572_MOESM1_ESM.pdf (1017 kb)
ESM 1(PDF 1017 kb)

References

  1. 1.
    Drude P (1902) The theory of optics. Green, New YorkGoogle Scholar
  2. 2.
    Vorobyov I, Anisimov VM, Greene S, Venable RM, Moser A, Pastor RW, MacKerell AD (2007) J Chem Theory Comput 3:1120–1133CrossRefGoogle Scholar
  3. 3.
    Anisimov VM, Lamoureux G, Vorobyov IV, Huang N, Roux B, MacKerell AD (2005) J Chem Theory Comput 1:153–168CrossRefGoogle Scholar
  4. 4.
    Tu Y, Laaksonen A (2000) Chem Phys Lett 329:283–288CrossRefGoogle Scholar
  5. 5.
    in het Panhuis M, Popelier PLA, Munn RW, Ángyán JG (2001) J Chem Phys 114:7951–7961CrossRefGoogle Scholar
  6. 6.
    Lamoureux G, MacKerell AD , Roux B (2003) J Chem Phys 119:5185–5197CrossRefGoogle Scholar
  7. 7.
    Kaminski GA, Stern HA, Berne BJ, Friesner RA (2004) J Phys Chem A 108:621–627CrossRefGoogle Scholar
  8. 8.
    Giese TJ, York DM (2004) J Chem Phys 120:9903–9906CrossRefGoogle Scholar
  9. 9.
    Schropp B, Tavan P (2008) J Phys Chem B 112:6233–6240CrossRefGoogle Scholar
  10. 10.
    Morita A (2002) J Comput Chem 23:1466–1471CrossRefGoogle Scholar
  11. 11.
    Botek E, Giribet C, de Azúa MR, Negri RM, Bernik D (2008) J Phys Chem A 112:6992–6998CrossRefGoogle Scholar
  12. 12.
    Lamoureux G, Harder E, Vorobyov IV, Roux B, MacKerell AD (2006) Chem Phys Lett 418:245–249CrossRefGoogle Scholar
  13. 13.
    Lopes PEM, Lamoureux G, MacKerell AD (2009) J Comput Chem 30:1821–1838Google Scholar
  14. 14.
    Morita A, Kato S (1999) J Chem Phys 110:11987–11998CrossRefGoogle Scholar
  15. 15.
    Harder E, Anisimov VM, Whitfield T, MacKerell AD , Roux B (2008) J Phys Chem B 112:3509–3521CrossRefGoogle Scholar
  16. 16.
    Vorobyov IV, Anisimov VM, MacKerell AD (2005) J Phys Chem B 109:18988–18999CrossRefGoogle Scholar
  17. 17.
    Noskov SY, Lamoureux G, Roux B (2005) J Phys Chem B 109:6705–6713CrossRefGoogle Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA , Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Corss JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian Inc, Wallingford, CTGoogle Scholar
  19. 19.
    Brooks BR, Brooks CL III, MacKerell AD , Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) J Comput Chem 30:1545–1614CrossRefGoogle Scholar
  20. 20.
    MacKerell AD , Brooks B, Brooks CL III, Nilsson L, Roux B, Won Y, Karplus M (1998) CHARMM: the energy function and its parameterization with an overview of the program. In: PvR S, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 1. John Wiley and Sons, Chichester, p 271Google Scholar
  21. 21.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217CrossRefGoogle Scholar
  22. 22.
    Harder E, Anisimov VM, Vorobyov IV, Lopes PEM, Noskov SY, MacKerell AD , Roux B (2006) J Chem Theory Comput 2:1587–1597CrossRefGoogle Scholar
  23. 23.
    Miller KJ (1990) J Am Chem Soc 112:8533–8542CrossRefGoogle Scholar
  24. 24.
    Dixon RW, Kollman PA (1997) J Comput Chem 18:1632–1646CrossRefGoogle Scholar
  25. 25.
    Kollman P (1993) Chem Rev 93:2395–2417CrossRefGoogle Scholar
  26. 26.
    Deng Y, Roux B (2004) J Phys Chem B 108:16567–16576CrossRefGoogle Scholar
  27. 27.
    Lagüe P, Pastor RW, Brooks BR (2004) J Phys Chem B 108:363–368CrossRefGoogle Scholar
  28. 28.
    MacKerell AD (2004) J Comput Chem 25:1584–1604CrossRefGoogle Scholar
  29. 29.
    Anisimov VM, Vorobyov IV, Roux B, MacKerell AD (2007) J Chem Theory Comput 3:1927–1946CrossRefGoogle Scholar
  30. 30.
    Davis JE, Warren GL, Patel S (2008) J Phys Chem B 112:8298–8310CrossRefGoogle Scholar
  31. 31.
    Rick SW, Berne BJ (1996) J Am Chem Soc 118:672–679CrossRefGoogle Scholar
  32. 32.
    Lide DR (ed) (2003) CRC handbook chemistry and physics, 84th edn. Boca Raton, CRC PressGoogle Scholar
  33. 33.
    Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  34. 34.
    Wu J, Liu Z, Bi S, Meng X (2003) J Chem Eng Data 48:426–429CrossRefGoogle Scholar
  35. 35.
    Liu ZY, Chen ZC (1995) Chem Eng J Biochem Eng J 59:127–132CrossRefGoogle Scholar
  36. 36.
    Kelly CP, Cramer CJ, Truhlar DG (2005) J Chem Theory Comput 1:1133–1152CrossRefGoogle Scholar
  37. 37.
    Rizzo RC, Aynechi T, Case DA, Kuntz ID (2006) J Chem Theory Comput 2:128–139CrossRefGoogle Scholar
  38. 38.
    Obama M, Oodera Y, Kohama N, Yanase T, Saito Y, Kusano K (1985) J Chem Eng Data 30:1–5CrossRefGoogle Scholar
  39. 39.
    Chickos JS, Acree WE (2003) J Phys Chem Ref Data 32:519–878CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Christopher M. Baker
    • 1
  • Alexander D. MacKerellJr.
    • 1
  1. 1.Department of Pharmaceutical Sciences, School of PharmacyUniversity of Maryland BaltimoreBaltimoreUSA

Personalised recommendations