Journal of Molecular Modeling

, Volume 16, Issue 3, pp 559–565 | Cite as

Neighboring group stabilization by σ-holes

  • Richard A. J. O’Hair
  • Craig M. Williams
  • Timothy Clark
Original Paper

Abstract

We have used density-functional theory to investigate the neighboring-group stabilization of iodine, arsenic, and phosphorus-centered oxyanion moieties in species such as deprotonated 2-iodoxybenzoic acid (IBX) and its analogs. The magnitudes of different stabilizing effects and further candidates for analogous stabilization are analyzed.

Figure

The σ-hole colinear with the in-plane I-O bond in PhIO2

Keywords

Density functional theory σ-Hole IBA IBS IBX 2-iodoxybenzoic 

Supplementary material

894_2009_567_MOESM1_ESM.doc (419 kb)
ESM 1Gaussian archive entries and basis set definition for the calculations mentioned in the text. (DOC 419 kb)

References

  1. 1.
    Politzer P, Lane P, Concha MV, Ma Y, Murray JS (2007) J Mol Model 13:305–311CrossRefGoogle Scholar
  2. 2.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  3. 3.
    Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729CrossRefGoogle Scholar
  4. 4.
    Murray JS, Lane P, Politzer P (2007) Int J Quant Chem 107:2286–2292CrossRefGoogle Scholar
  5. 5.
    Politzer P, Murray JS, Lane P (2007) Int J Quant Chem 107:3046–3052CrossRefGoogle Scholar
  6. 6.
    Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038CrossRefGoogle Scholar
  7. 7.
    Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650CrossRefGoogle Scholar
  8. 8.
    Murray JS, Lane P, Politzer P (2008) Int J Quant Chem 108:2770–2781CrossRefGoogle Scholar
  9. 9.
    Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) J Chem Theor Comp 5:155–163CrossRefGoogle Scholar
  10. 10.
    Clark T, Murray JS, Lane P, Politzer P (2008) J Mol Model 14:689–697CrossRefGoogle Scholar
  11. 11.
    Politzer P, Murray JS, Concha M (2008) J Mol Model 14:659–665CrossRefGoogle Scholar
  12. 12.
    Hoffmann R, Radom L, Pople JA, Schleyer PvR, Hehre WJ, Salem L (1972) J Am Chem Soc 94:6221–6223CrossRefGoogle Scholar
  13. 13.
    Radom L, Hehre WJ, Pople JA (1972) J Am Chem Soc 94:2371–2381CrossRefGoogle Scholar
  14. 14.
    Kirby AG (1983) The anomeric effect and related stereoelectronic effects of oxygen. Springer, BerlinGoogle Scholar
  15. 15.
    Gallen MJ, Goumont R, Clark T, Terrier F, Williams CM (2006) Angew Chem 118:2995–3000 Angew Chem Int Ed Engl 45:2929–2934CrossRefGoogle Scholar
  16. 16.
    Waters T, Boulton J, Clark T, Gallen MJ, Williams CM, O’Hair RAJ (2008) Org Biomol Chem 6:2530–2533CrossRefGoogle Scholar
  17. 17.
    Katritzky AR, Savage GP, Palenik GJ, Qian K, Zhang Z, Durst HD (1990) J Chem Soc Perkin Trans II 1657–1661Google Scholar
  18. 18.
    Moss RA, Wilk B, Krogh-Jespersen K, Blair JT, Westbrook JD (1989) J Am Chem Soc 111:250–258CrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) All Calculations used Gaussian 03. Gaussian, Inc. Wallingford, CTGoogle Scholar
  20. 20.
    Becke AD (1989) In: Salahub DR, Zerner MC (eds) The Challenge of d- and f-electrons: Theory and Computation American Chemical Society. Washington, DC, chap 12, pp 165–179Google Scholar
  21. 21.
    Vosko SH, Wilk L, Nusair M (1989) Can J Phys 58:1200–1211CrossRefGoogle Scholar
  22. 22.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  23. 23.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  24. 24.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371CrossRefGoogle Scholar
  25. 25.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123CrossRefGoogle Scholar
  26. 26.
    Parmar SS, Basra TS, Malhotra RM, Sandhu SS (1980) Ind J Chem 19A:886–888Google Scholar
  27. 27.
    Parmar SS, Saluja HK, Bathla HK (1988) Ind J Chem 27A:606–608Google Scholar
  28. 28.
    Hundal MS, Hundal G, Parmar SS (1996) Acta Cryst C 52:2726–2728CrossRefGoogle Scholar
  29. 29.
    Nakanishi W, Ikeda Y, Iwamura H (1982) J Org Chem 47:2275–2278CrossRefGoogle Scholar
  30. 30.
    Nakanishi W, Matsumoto S, Ikeda Y, Sugawara T, Kawada Y, Iwamura H (1981) Chem Lett 1353–1356Google Scholar
  31. 31.
    Dahlen B (1973) Acta Cryst B 29:595–602CrossRefGoogle Scholar
  32. 32.
    Nakanishi W, Murata S, Ikeda Y, Sugawara T, Kawada Y, Iwamura H (1981) Tetrahedron Lett 22:4241–4244CrossRefGoogle Scholar
  33. 33.
    Uyanik M, Akakura M, Ishihara K (2008) J Am Chem Soc 131:251–262CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Richard A. J. O’Hair
    • 1
  • Craig M. Williams
    • 2
  • Timothy Clark
    • 3
  1. 1.School of Chemistry and ARC Centre for Free Radical Chemistry and BiotechnologyUniversity of MelbourneMelbourne, VictoriaAustralia
  2. 2.School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia
  3. 3.Computer-Chemie-Centrum and Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations