Advertisement

Journal of Molecular Modeling

, Volume 16, Issue 3, pp 419–429 | Cite as

McVol - A program for calculating protein volumes and identifying cavities by a Monte Carlo algorithm

  • Mirco S. Till
  • G. Matthias Ullmann
Original Paper

Abstract

In this paper, we describe a Monte Carlo method for determining the volume of a molecule. A molecule is considered to consist of hard, overlapping spheres. The surface of the molecule is defined by rolling a probe sphere over the surface of the spheres. To determine the volume of the molecule, random points are placed in a three-dimensional box, which encloses the whole molecule. The volume of the molecule in relation to the volume of the box is estimated by calculating the ratio of the random points placed inside the molecule and the total number of random points that were placed. For computational efficiency, we use a grid-cell based neighbor list to determine whether a random point is placed inside the molecule or not. This method in combination with a graph-theoretical algorithm is used to detect internal cavities and surface clefts of molecules. Since cavities and clefts are potential water binding sites, we place water molecules in the cavities. The potential water positions can be used in molecular dynamics calculations as well as in other molecular calculations. We apply this method to several proteins and demonstrate the usefulness of the program. The described methods are all implemented in the program McVol, which is available free of charge from our website at http://www.bisb.uni-bayreuth.de/software.html.

Keywords

Cavities in proteins Molecular volume Monte Carlo Water placement inside proteins 

Notes

Acknowledgements

This work was supported by the DFG grant UL 174/7-1.

References

  1. 1.
    Kawabata T, Go N (2007) Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites. Structure 68:516–529Google Scholar
  2. 2.
    Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Prot Sci 7:1884–1897CrossRefGoogle Scholar
  3. 3.
    Thornton JM, Todd AE, Milburn D, Borkakoti N, Orengo CA (2000) From structure to function: approaches and limitations. Nat Struct Biol 7:991–994CrossRefGoogle Scholar
  4. 4.
    Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288CrossRefGoogle Scholar
  5. 5.
    Delaney JS (1992) Finding and filling protein cavities using cellular logic operations. J Mol Graph 10:174CrossRefGoogle Scholar
  6. 6.
    Warshel A (2002) Molecular dynamics simulations of biological reactions. Acc Chem Res 35:385–395CrossRefGoogle Scholar
  7. 7.
    Till MS, Essigke T, Becker T, Ullmann GM (2008) Simulating the proton transfer in gramicidin a by a sequential dynamical Monte Carlo method. J Phys Chem, B 112:13401–13410CrossRefGoogle Scholar
  8. 8.
    Bondar AN, Elstner M, Suhai S, Smith JC, Fischer S (2004) Mechanism of primary proton transfer in bacteriorhodopsin. Structure 12:1281–1288CrossRefGoogle Scholar
  9. 9.
    Edelsbrunner H, Mucke EP (1990) Simulation of simplicity - a techique to cope with degenerate cases in geometric algorithms. ACM Trans Graph 9:66–104CrossRefGoogle Scholar
  10. 10.
    Xie L, Bourne PE (2007) A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand binding sites. Bioinformatics 8Google Scholar
  11. 11.
    Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph 15:359CrossRefGoogle Scholar
  12. 12.
    Levitt DG, Banaszak LJ (1992) POCKET - A computer-graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph 10:229–234CrossRefGoogle Scholar
  13. 13.
    Laskowski RA (1995) SURFNET - A program for visualizing molecular surfaces, cavities and intermolecular interactions. J Mol Graph 13:323CrossRefGoogle Scholar
  14. 14.
    Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press Google Scholar
  15. 15.
    Lee B, Richards FM (1971) Interpretation of protein structures - estimation of static accessibility. J Mol Biol 55:379Google Scholar
  16. 16.
    Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M (1995) The double cubic lattice method - efficient approaches to numerical-integration of surface-area and volume and to dot surface contouring of molecular assemblies. J Com Chem 16:273–284CrossRefGoogle Scholar
  17. 17.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C, 2nd edn. Cambridge University Press, Cambridge UKGoogle Scholar
  18. 18.
    Sedgewick (R) Algorithms in C++, part 5. Addison-Wesley, BostonGoogle Scholar
  19. 19.
    M. Masuya and J. Doi. Detection and Geometric Modeling of Molecular Surfaces and Cavities Using Digital Mathematical Morphological Operations. J Mol Graph, 13:331, 1995.Google Scholar
  20. 20.
    Peters KP, Fauck J, Frommel C (1996) The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J Mol Biol 256:201–213CrossRefGoogle Scholar
  21. 21.
    Ruppert J, Welch W, Jain AN (1997) Automatic identification and representation of protein binding sites for molecular docking. Prot Sci 6:524–533CrossRefGoogle Scholar
  22. 22.
    Brady GP, Stouten PFW (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Design 14:383–401CrossRefGoogle Scholar
  23. 23.
    Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) Ligandfit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph 21:289–307CrossRefGoogle Scholar
  24. 24.
    Laurie ATR, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916CrossRefGoogle Scholar
  25. 25.
    Calimet N, Ullmann GM (2004) The influence of a transmembrane ph gradient on protonation probabilities of bacteriorhodopsin: the structural basis of the back-pressure effect. J Mol Bio 339(3):571–589CrossRefGoogle Scholar
  26. 26.
    Koepke J, Krammer E-M, Klingen AR, Sebban P, Ullmann GM, Fritzsch G (2007) pH modulates the quinone position in the photosynthetic reaction center from rhodobacter sphaeroides in the neutral and charge separated states. J Mol Biol 371:396–409CrossRefGoogle Scholar
  27. 27.
    Klingen AR, Palsdottir H, Hunte C, Ullmann GM (2007) Redox- linked protonation state changes in cytochrome bc1 identified by Poisson-Bolt zmann electrostatics calculations. Biochem Biophys Acta 1767:204–221CrossRefGoogle Scholar
  28. 28.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminatha S, Karplus M (1983) CHARMM - A programm for macromolecular energy, minimization, and dynamics calculations. J Com Chem 4:187–217CrossRefGoogle Scholar
  29. 29.
    Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68:441CrossRefGoogle Scholar
  30. 30.
    Hiromoto T, Fujiwara S, Hosokawa K, Yamaguchi H (2006) Crystal structure of 3- hydroxybenzoate hydroxylase from comamonas testosteroni has a large tunnel for substrate and oxygen access to the active site. J Mol Biol 364:878–896CrossRefGoogle Scholar
  31. 31.
    Borodich AI, Ullmann GM (2004) Internal hydration of protein cavities: studies on BPTI. Phys Chem 6:1906–1911CrossRefGoogle Scholar
  32. 32.
    Takano K, Funahashi J, Yamagata Y, Fujii S, Yutani K (1997) Contribution of water molecules in the interior of a protein to the conformational stability. J Mol Biol 274:132–142CrossRefGoogle Scholar
  33. 33.
    Otting G, Liepinsh E, Halle B, Frey U (1997) NMR identification of hydrophobic cavities with low water occupancies in protein structures using small gas molecules. Nat Struct Biol 4:396–404CrossRefGoogle Scholar
  34. 34.
    Kodanadapani R, Suresh CG, Vijayan M (1990) Crystal-structure of low humidity tetragonal lysozyme at 2.1A resolution. J Biol Chem 265:16126–16131Google Scholar
  35. 35.
    Lanyi JK (2006) Proton transfers in the bacteriorhodopsin photocycle. Bioch et Biophys Acta - Bioener 1757:1012–1018CrossRefGoogle Scholar
  36. 36.
    Heberle J (2000) Proton transfer reactions across bacteriorhodopsin and along the membrane. Bioch et Biophys Acta - Bioener 1458:135–147CrossRefGoogle Scholar
  37. 37.
    Okamura MY, Paddock ML, Graige MS, Feher G (2000) Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta 1458:148–163CrossRefGoogle Scholar
  38. 38.
    Stowell MHB, McPhillips TM, Rees DC, Soltis SM, Abresch E, Feher G (1997) Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276:812–816CrossRefGoogle Scholar
  39. 39.
    Paddock ML, Feher G, Okamura MY (2003) Proton transfer pathways and mechanism in bacterial reaction centers. FEBS Lett 555:45–50CrossRefGoogle Scholar
  40. 40.
    Parkin S, Rupp B, Hope H (1996) Structure of bovine pancreatic trypsin inhibitor at 125K: definition of carboxyl-terminal residues Gly57 and Ala58. Acta Crystallogr, Sect.D 52:18–29CrossRefGoogle Scholar
  41. 41.
    Jung A, Domratcheva T, Tarutina M, Wu Q, Ko WH, Shoeman RL, Gomelsky M, Gardner KH, Schlichting L (2005) Structure of a bacterial BLUF photoreceptor: insights into blue light-mediated signal transduction. Proc Natl Acad Sci USA 102:12350–12355CrossRefGoogle Scholar
  42. 42.
    Brownlow S, Cabral JHM, Cooper R, Flower DR, Yewdall SJ, Polikarpov I, North ACT, Sawyer L (1997) Bovine Beta-lactoglobulin at 1.8 angstrom resolution - still an enigmatic lipocalin. Structure 5:481–495CrossRefGoogle Scholar
  43. 43.
    Nogues I, Perez-Dorado I, Frago S, Bittel C, Mayhew SG, Gomez-Moreno C, Hermoso JA, Medina M, Cortez N, Carrillo N (2005) The Ferredoxin-NADP(H) reductase from rhodobacter capsulatus: molecular structure and catalytic mechanism. Biochemistry 44:11730–11740CrossRefGoogle Scholar
  44. 44.
    Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 angstrom resolution. J Mol Biol 291:899–911CrossRefGoogle Scholar
  45. 45.
    Retailleau P, Colloc’h N, Vivares D, Bonnete F, Castro B, El Hajji M, Mornon JP, Monard G, Prange T (2004) Complexed and ligand-free high-resolution structures of Urate Oxidase (Uox) from aspergillus flavus: a reassignment of the active-site binding. Acta Crystallogr, Sect.D 60:453–462CrossRefGoogle Scholar
  46. 46.
    Andrade SLA, Dickmanns A, Ficner R, Einsle O (2005) Crystal structure of the archaeal ammonium transporter amt-1 from archaeoglobus fulgidus. Proc Natl Acad Sci USA 102:14994–14999CrossRefGoogle Scholar
  47. 47.
    Fujimoto Z, Takase K, Doui N, Momma M, Matsumoto T, Mizuno H (1998) Crystal structure of a catalytic-site mutant alpha-amylase from bacillus subtilis complexed with maltopentaose. J Mol Biol 277:393–407CrossRefGoogle Scholar
  48. 48.
    Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K, Ishiura M, Kanehisa M, Roberts VA, Todo T, Tainer JA, Getzoff ED (2003) Identification of a new cryptochrome class: structure, function, and evolution. Mol Cell 11:59–67CrossRefGoogle Scholar
  49. 49.
    Wohlfahrt G, Witt S, Hendle J, Schomburg D, Kalisz HM, Hecht HJ (1999) 1.8 and 1.9 angstrom resolution structures of the penicillium amagasakiense and aspergillus niger glucose oxidases as a basis for modelling substrate complexes. Acta Crystallogr, Sect.D 55:969–977CrossRefGoogle Scholar
  50. 50.
    Hohenester E, Maurer P, Timpl R (1997) Crystal structure of a pair of follistatin-like and EF-hand calcium-binding domains in BM-40. EMBO J 16:3778–3786CrossRefGoogle Scholar
  51. 51.
    Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH, Einsle O (2007) Structure of the non-redox-active tungsten/[4Fe : 4S] enzyme acetylene hydratase. Proc Natl Acad Sci USA 104:3073–3077CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Structural Biology/BioinformaticsUniversity of BayreuthBayreuthGermany

Personalised recommendations