Journal of Molecular Modeling

, 15:1417 | Cite as

Quinoline alkaloids as intercalative topoisomerase inhibitors

Original Paper

Abstract

Quinoline alkaloids are abundant in the Rutaceae, and many have exhibited cytotoxic activity. Because structurally related antitumor alkaloids such as camptothecin and fagaronine are known to function as intercalative topoisomerase poisons, it is hypothesized that cytotoxic Stauranthus alkaloids may also serve as intercalative topoisomerase inhibitors. To test this hypothesis theoretically, ten Stauranthus quinoline alkaloids were examined for potential intercalation into DNA using a molecular docking approach. Four of the alkaloids (stauranthine, skimmianine, 3′,6′-dihydroxy-3′,6′-dihydrostauranthine, and trans-3′,4′-dihydroxy-3′,4′-dihydrostauranthine) were able to intercalatively dock consistently into DNA. In order to probe the intermolecular interactions that may be responsible for intercalation of these quinoline alkaloids, density functional calculations have been carried out using both the B3LYP and M06 functionals. M06 calculations indicated favorable π–π interactions between either skimmianine or stauranthine and the guanine–cytosine base pair. Furthermore, the lowest-energy face-to-face orientation of stauranthine with guanine is consistent with favorable dipole–dipole orientations, favorable electrostatic interactions, and favorable frontier molecular orbital interactions. Likewise, the lowest-energy face-to-face orientation of stauranthine with the guanine–cytosine base pair reveals favorable electrostatic interactions as well as frontier molecular orbital interactions. Thus, not only can quinoline alkaloids dock intercalatively into DNA, but the docked orientations are also electronically favorable.

Figure

Lowest-energy face-to-face π–π interaction between stauranthine and guanine

Keywords

Intercalation DNA Quinoline alkaloids Docking π–π interactions 

References

  1. 1.
    Wink M (2007) Alkaloids 64:1–47Google Scholar
  2. 2.
    Liu LF (1989) Annu Rev Biochem 58:351–375CrossRefGoogle Scholar
  3. 3.
    Wilstermann AM, Osheroff N (2003) Curr Top Med Chem 3:321–338CrossRefGoogle Scholar
  4. 4.
    Pommier Y, Pourquier P, Fan Y, Strumberg D (1998) Biochim Biophys Acta 1400:83–106Google Scholar
  5. 5.
    Burden DA, Osheroff N (1998) Biochim Biophys Acta 1400:139–154Google Scholar
  6. 6.
    Li QY, Zu YG, Shi RZ, Yao LP (2006) Curr Med Chem 13:2021–2039CrossRefGoogle Scholar
  7. 7.
    Wang LK, Johnson RK, Hecht SM (1993) Chem Res Toxicol 6:813–818CrossRefGoogle Scholar
  8. 8.
    Fox ME, Smith PJ (1990) Cancer Res 50:5813–5818Google Scholar
  9. 9.
    Stiborova M, Rupertova M, Schmeiser HH, Frei E (2006) Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 150:13–23Google Scholar
  10. 10.
    Bonjean K, De Pauw-Gillet MC, Defresne MP, Colson P, Houssier C, Dassonneville L, Bailly C, Greimers R, Wright C, Quetin-Leclercq J, Tits M, Angenot L (1998) Biochemistry 37:5136–5146CrossRefGoogle Scholar
  11. 11.
    Seigler DS (1977) Plant systematic and alkaloids. In: Manske RHF (ed) The alkaloids, vol XVI. Academic, New York, pp 1–82Google Scholar
  12. 12.
    Hu J, Zhang WD, Shen YH, Zhang C, Xu L, Liu RH, Wang B, Xu XK (2007) Biochem Syst Ecol 35:114–117CrossRefGoogle Scholar
  13. 13.
    Boyd DR, Sharma ND, Loke PL, Malone JF, McRoberts WC, Hamilton JTG (2007) Org Biomol Chem 5:2983–2991CrossRefGoogle Scholar
  14. 14.
    Svoboda GH, Poore GA, Simpson PJ, Boder GB (1966) J Pharm Sci 55:758–768CrossRefGoogle Scholar
  15. 15.
    Wu TS, Wang ML, Jong TT, McPhail AT, McPhail DR, Lee KH (1989) J Nat Prod 52:1284–1289CrossRefGoogle Scholar
  16. 16.
    Cui B, Chai H, Dong Y, Horgen FD, Hansen B, Madulid DA, Soejarto DD, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD (1999) Phytochemistry 52:95–98CrossRefGoogle Scholar
  17. 17.
    Chaturvedula VSP, Schilling JK, Miller JS, Andriantsiferana R, Rasamison VE, Kingston DGI (2003) J Nat Prod 66:532–534CrossRefGoogle Scholar
  18. 18.
    Chen JJ, Fang HY, Duh CY, Chen IS (2005) Planta Med 71:470–475CrossRefGoogle Scholar
  19. 19.
    Jansen O, Akhmedjanova V, Angenot L, Balansard G, Chariot A, Ollivier E, Tits M, Frédérich M (2006) J Ethnopharmacol 105:241–245CrossRefGoogle Scholar
  20. 20.
    Prescott TAK, Sadler IH, Kiapranis R, Maciver SK (2007) J Ethnopharmacol 109:289–294CrossRefGoogle Scholar
  21. 21.
    Kaczmarek L, Peczyńska-Czoch W, Osiadacz J, Mordarski M, Sokalski WA, Boratński J, Marcinkowska E, Glazman-Kuśnierczyk H, Radzikowski C (1999) Bioorg Med Chem 7:2457–2464CrossRefGoogle Scholar
  22. 22.
    Osiadacz J, Majka J, Czarnecki K, Peczyńska-Czoch W, Zakrzewska-Czerwińska J, Kaczmarek Ł, Sokalski WA (2000) Bioorg Med Chem 8:937-943Google Scholar
  23. 23.
    Chen YL, Hung HM, Lu CM, Li KC, Tzeng CC (2004) Bioorg Med Chem 12:6539–6542CrossRefGoogle Scholar
  24. 24.
    Carney JR, Scheuer PJ, Kelly-Borges M (1993) Tetrahedron 49(38):8483–8486CrossRefGoogle Scholar
  25. 25.
    Molinski TF (1993) Chem Rev 93:1825–1838CrossRefGoogle Scholar
  26. 26.
    McDonald LA, Eldredge GS, Barrows LR, Ireland CM (1994) J Med Chem 37:3819–3827CrossRefGoogle Scholar
  27. 27.
    Dias N, Vezin H, Lansiaux A, Bailly C (2005) Top Curr Chem 253:89–108Google Scholar
  28. 28.
    Setzer WN, Setzer MC, Schmidt JM, Moriarity DM, Vogler B, Reeb S, Holmes AM, Haber WA (2000) Planta Med 66:493–494CrossRefGoogle Scholar
  29. 29.
    Setzer WN, Vogler B, Bates RB, Schmidt JM, Dicus CW, Nakkiew P, Haber WA (2003) Phytochem Anal 14:54–59CrossRefGoogle Scholar
  30. 30.
    Nunn CM, Van Meervelt L, Zhang SD, Moore MH, Kennard O (1991) J Mol Biol 222:167–177CrossRefGoogle Scholar
  31. 31.
    Dautant A, Langlois d’Estaintot B, Gallois B, Brown T, Hunter WN (1995) Nucleic Acids Res 23:1710–1716CrossRefGoogle Scholar
  32. 32.
    Berger I, Su L, Spitzner JR, Kang C, Burke TG, Rich A (1995) Nucleic Acids Res 23:4488–4494CrossRefGoogle Scholar
  33. 33.
    Gao YG, Wang AH (1995) J Biomol Struct Dyn 13:103–117Google Scholar
  34. 34.
    Adams A, Guss JM, Collyer CA, Denny WA, Wakelin LPG (1999) Biochemistry 38:9221–9233CrossRefGoogle Scholar
  35. 35.
    Robinson H, Gao YG, Yang XL, Sanishvili R, Joachimiak A, Wang AHJ (2001) Biochemistry 40:5587–5592CrossRefGoogle Scholar
  36. 36.
    Smith CK, Davies GJ, Dodson EJ, Moore MH (1995) Biochemistry 34:415–425CrossRefGoogle Scholar
  37. 37.
    Hu GG, Shui X, Leng F, Priebe W, Chaires JB, Williams LD (1997) Biochemistry 36:5940–5946CrossRefGoogle Scholar
  38. 38.
    Lisgarten JN, Coll M, Portugal J, Wright CW, Aymami J (2002) Nature Struct Biol 9:57–60CrossRefGoogle Scholar
  39. 39.
    Canals A, Purciolas M, Aymami J, Coll M (2005) Acta Crystallogr Sect D 61:1009–1012CrossRefGoogle Scholar
  40. 40.
    Williams HEL, Colgrave ML, Searle MS (2002) Eur J Biochem 269:1726–1733CrossRefGoogle Scholar
  41. 41.
    Robinson H, Priebe W, Chaires JB, Wang AH (1997) Biochemistry 36:8663–8670CrossRefGoogle Scholar
  42. 42.
    Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Stewart LJ (2002) Proc Natl Acad Sci USA 99:15387–15392CrossRefGoogle Scholar
  43. 43.
    Staker BL, Feese MD, Cushman M, Pommier Y, Zembower D, Stewart L, Burgin AB (2005) J Med Chem 48:2336–2345CrossRefGoogle Scholar
  44. 44.
    Lauria A, Ippolito M, Almerico AM (2007) J Mol Model 13:393–400CrossRefGoogle Scholar
  45. 45.
    Bhowmik S, Bagchi A, Ghosh R (2008) Int J Integr Biol 2:8–14Google Scholar
  46. 46.
    Byler KG (2001) Frontier molecular orbital interactions between intercalating quinoline alkaloids and DNA base pairs: an ab initio investigation. MS Thesis, University of Alabama in HuntsvilleGoogle Scholar
  47. 47.
    Nakatani K, Matsuno T, Adachi K, Hagihara S, Saito I (2001) J Am Chem Soc 123:5695–5702CrossRefGoogle Scholar
  48. 48.
    Řeha D, Kabeláč M, Ryjáček F, Šponer J, Šponer JE, Elstner M, Suhai S, Hobza P (2002) J Am Chem Soc 124:3366–3376CrossRefGoogle Scholar
  49. 49.
    Dračinský M, Castaño O (2004) Phys Chem Chem Phys 6:1799–1805CrossRefGoogle Scholar
  50. 50.
    El-Gogary TM, Koehler G (2007) THEOCHEM 808:97–109CrossRefGoogle Scholar
  51. 51.
    Kumar A, Elstner M, Suhai S (2003) Int J Quant Chem 95:44–59CrossRefGoogle Scholar
  52. 52.
    Riahi S, Ganjali MR, Dinarvand R, Karamdoust S, Bagherzadeh K, Norouzi P (2008) Chem Biol Drug Des 71:474–482CrossRefGoogle Scholar
  53. 53.
    Jena NR, Mishra PC (2007) J Mol Model 13:267–274CrossRefGoogle Scholar
  54. 54.
    Hobza P, Šponer J (1999) Chem Rev 99:3247–3276CrossRefGoogle Scholar
  55. 55.
    Hunter CA, Lawson KR, Perkins J, Urch CJ (2001) J Chem Soc Perkin Trans 2:651–669Google Scholar
  56. 56.
    Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) J Am Chem Soc 124:104–112CrossRefGoogle Scholar
  57. 57.
    Sinnokrot MO, Valeev EF, Sherrill CD (2002) J Am Chem Soc 124:10887–10893CrossRefGoogle Scholar
  58. 58.
    Sato T, Tsuneda T, Hirao K (2005) J Chem Phys 123:104307CrossRefGoogle Scholar
  59. 59.
    Podeszwa R, Bukowski R, Szalewicz K (2006) J Phys Chem A 110:10345–10354CrossRefGoogle Scholar
  60. 60.
    DiStasio RA, von Helden G, Steele RP, Head-Gordon M (2007) Chem Phys Lett 437:277–283CrossRefGoogle Scholar
  61. 61.
    Jha PC, Rinkevicius Z, Ågren H, Seal P, Chakrabarti S (2008) Phys Chem Chem Phys 10:2715–2712CrossRefGoogle Scholar
  62. 62.
    Bludský O, Rubeš M, Soldán P, Nachtigall P (2008) J Chem Phys 128:114102CrossRefGoogle Scholar
  63. 63.
    Pitoňák M, Riley KE, Neogrády P, Hobza P (2008) Chem Phys Chem 9:1636–1644Google Scholar
  64. 64.
    Dabkowska I, Gonzalez HV, Jurečka P, Hobza P (2005) J Phys Chem A 109:1131–1136CrossRefGoogle Scholar
  65. 65.
    Cooper VR, Thonhauser T, Langreth DC (2008) J Chem Phys 128:204102CrossRefGoogle Scholar
  66. 66.
    Šponer J, Riley KE, Hobza P (2008) Phys Chem Chem Phys 10:2595–2610CrossRefGoogle Scholar
  67. 67.
    Jaffe RL, Smith GD (1996) J Chem Phys 105:2780–2788CrossRefGoogle Scholar
  68. 68.
    Hobza P, Selzle HL, Schlag EW (1996) J Phys Chem 100:18790–18794CrossRefGoogle Scholar
  69. 69.
    Tsuzuki S, Uchimaru T, Matsumura K, Mikami M, Tanabe K (2000) Chem Phys Lett 319:547–554CrossRefGoogle Scholar
  70. 70.
    Tsuzuki S, Lüthi HP (2001) J Chem Phys 114:3949–3957CrossRefGoogle Scholar
  71. 71.
    Milet A, Korona T, Moszynski R, Kochanski E (1999) J Chem Phys 111:7727–7735CrossRefGoogle Scholar
  72. 72.
    Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) J Chem Phys 114:5149–5155CrossRefGoogle Scholar
  73. 73.
    Cybulski SM, Bledson TM, Toczyłowski RR (2002) J Chem Phys 116:11039–11040CrossRefGoogle Scholar
  74. 74.
    Mourik TV, Gdanitz RJ (2002) J Chem Phys 116:9620–9623CrossRefGoogle Scholar
  75. 75.
    Cybulski SM, Seversen CE (2005) J Chem Phys 122:014117CrossRefGoogle Scholar
  76. 76.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  77. 77.
    Jurečka P, Černý J, Hobza P, Salahub DR (2007) J Comput Chem 28:555–569CrossRefGoogle Scholar
  78. 78.
    Wu Q, Yang W (2002) J Chem Phys 116:515–524CrossRefGoogle Scholar
  79. 79.
    Antony J, Grimme S (2006) Phys Chem Chem Phys 8:5287–5293CrossRefGoogle Scholar
  80. 80.
    Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918CrossRefGoogle Scholar
  81. 81.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  82. 82.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101CrossRefGoogle Scholar
  83. 83.
    Zhao Y, Truhlar DG (2005) Phys Chem Chem Phys 7:2701–2705CrossRefGoogle Scholar
  84. 84.
    Dkhissi A, Blossey R (2007) Chem Phys Lett 439:35–39CrossRefGoogle Scholar
  85. 85.
    Stepanian SG, Karachevtsev MV, Glamazda AYu, Karachevtsev VA, Adamowicz L (2008) Chem Phys Lett 459:153–158CrossRefGoogle Scholar
  86. 86.
    Gu J, Wang J, Leszczynski J, Xie Y, Schaefer HF (2008) Chem Phys Lett 459:164–166CrossRefGoogle Scholar
  87. 87.
    Wong BM (2009) J Comput Chem 30:51–56CrossRefGoogle Scholar
  88. 88.
    Spartan ’08 for Windows (2006) Wavefunction, Irvine, CAGoogle Scholar
  89. 89.
    Halgren TA (1996) J Comp Chem 17:490–519CrossRefGoogle Scholar
  90. 90.
    Thompson MA (2004) ArgusLab 4.0.1. Planaria Software LLC, Seattle, WAGoogle Scholar
  91. 91.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  92. 92.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  93. 93.
    Hehre WJ, Radom L, PvR S (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  94. 94.
    Chermette H (1999) J Comput Chem 20:129–154CrossRefGoogle Scholar
  95. 95.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874CrossRefGoogle Scholar
  96. 96.
    Sarkar U, Roy DR, Chattaraj PK, Parthasarathi R, Padmanabhan J, Subramanian V (2005) J Chem Sci 117:599–612CrossRefGoogle Scholar
  97. 97.
    Chen JC, Qian L, Wu WJ, Chen LM, Zheng KC (2005) THEOCHEM 756:167–172CrossRefGoogle Scholar
  98. 98.
    Chen JC, Shen Y, Liao S, Chen LM, Zheng KC (2007) Int J Quant Chem 107:1468–1478CrossRefGoogle Scholar
  99. 99.
    Berman HM, Young PR (1981) Annu Rev Biophys Bioeng 10:87–114CrossRefGoogle Scholar
  100. 100.
    Xiao S, Lin W, Wang C, Yang M (2001) Bioorg Med Chem Lett 11:437–441CrossRefGoogle Scholar
  101. 101.
    El-Gogary TM, Koehler G (2009) THEOCHEM 895:57–64CrossRefGoogle Scholar
  102. 102.
    Müller W, Crothers DM (1975) Eur J Biochem 54:267–277CrossRefGoogle Scholar
  103. 103.
    Hunter CA, Lawson KR, Perkins J, Urch CJ (2001) J Chem Soc Perkin Trans 2:651–669Google Scholar
  104. 104.
    Boger DL, Invergo DJ, Coleman RS, Zarrinmayeh H, Kitos PA, Collins-Thompson S, Leong T, McLaughlin LW (1990) Chem Biol Interact 73:29–52CrossRefGoogle Scholar
  105. 105.
    Haq I (2002) Arch Biochem Biophys 403:1–15CrossRefGoogle Scholar
  106. 106.
    Baginski M, Fogolari F, Briggs JM (1997) J Mol Biol 274:253–267CrossRefGoogle Scholar
  107. 107.
    Rehn C, Pindur U (1996) Monats Chem 127:645–658CrossRefGoogle Scholar
  108. 108.
    Nakatani K, Matsuno T, Adachi K, Hagihara S, Saito I (2001) J Am Chem Soc 123:5695–5702CrossRefGoogle Scholar
  109. 109.
    Mei WJ, Liu J, Zheng KC, Lin LJ, Chao H, Li AX, Yun FC, Ji LN (2003) Dalton Trans 2003:1352–1359CrossRefGoogle Scholar
  110. 110.
    Nowak K, Wysocki S (2004) THEOCHEM 682:191–199CrossRefGoogle Scholar
  111. 111.
    Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–725CrossRefGoogle Scholar
  112. 112.
    Pullman B (1991) Anticancer Drug Design 6:95–105Google Scholar
  113. 113.
    Trotta E, D’Ambrosio E, Ravagnan G, Paci M (1995) Nucleic Acids Res 23:1333–1340CrossRefGoogle Scholar
  114. 114.
    Rehn C, Pundur U (1996) Monats Chem 127:631–644CrossRefGoogle Scholar
  115. 115.
    Lisgarten JN, Coll M, Portugal J, Wright CW, Aymami J (2002) Nature Struct Biol 9:57–60CrossRefGoogle Scholar
  116. 116.
    Ghose AK, Pritchett A, Crippen GM (1988) J Comput Chem 9:80–90CrossRefGoogle Scholar
  117. 117.
    Cramer CJ, Truhlar DG (1992) J Comput Chem 13:1089–1097CrossRefGoogle Scholar
  118. 118.
    Chambers CC, Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:16385–16398CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Kendall G. Byler
    • 1
  • Chen Wang
    • 1
  • William N. Setzer
    • 1
  1. 1.Department of ChemistryUniversity of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations