Journal of Molecular Modeling

, Volume 15, Issue 8, pp 935–943

Theoretical study of 1-(4-hexylcyclohexyl)-4-isothiocyanatobenzene: molecular properties and spectral characteristics

  • Maciej Szaleniec
  • Renata Tokarz-Sobieraj
  • Wacław Witko
Original Paper

Abstract

The mesogenic species 4-(4-hexylcyclohexyl) isothiocyanatobenzene (6CHBT) was studied with density functional theory and molecular mechanics in order to investigate the molecular properties, interactions between dimers and to interpret the IR spectrum. Two types of calculations were performed for model systems containing single and double molecules of 6CHBT. Calculations (involving conformation analysis) for isolated species indicated that the trans isomer, in the equatorial–equatorial conformation, is the most energetically stable. The 6CHBT molecule is polar, with a rather high (4.43 D) dipole moment with negatively charged isothiocyanato (NCS) ligand. The dimer–dimer interaction energies show that the head-to-head configuration (where van der Waals attraction forces play the major role) is the most energetically stable. Vibrational analysis provided detailed assignment of the experimental infra-red (IR) spectrum.

Figure

Most favorite 6CHBT head to head interaction - ESP mapped to electron density surface

Keywords

4-(Trans-4-hexylcyclohexyl) isothiocyanatobenzene Density functional theory Infra-red Van der Waals Molecular mechanics 

References

  1. 1.
    Chandrasekhar S, Madhusudana NV (1980) Annu Rev Mater Sci 10:133xCrossRefGoogle Scholar
  2. 2.
    Meyer RB (1977) Mol Cryst Liq Cryst 40:33CrossRefGoogle Scholar
  3. 3.
    de Gennes PG, Prost J (1995) The physics of liquid crystals. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Okabe M Polymer dispersion liquid crystal recording medium and method and apparatus for reproducing information. United States Patent 5933201Google Scholar
  5. 5.
    Hansen JR, Schneeberger RJ (1968) IEEE Trans Electron Devices 15:896CrossRefGoogle Scholar
  6. 6.
    Dąbrowski R, Dziaduszek J, Szczuciński T (1984) Mol Cryst Liq Cryst Lett 102:155CrossRefGoogle Scholar
  7. 7.
    Baran JW, Raszewski Z, Dąbrowski R, Kędzierski J, Rutkowska J (1985) Mol Cryst Liq Cryst 123:237CrossRefGoogle Scholar
  8. 8.
    Dabrowski R, Dziaduszek J, Szczucinski T (1985) Mol Cryst Liq Cryst 124:241Google Scholar
  9. 9.
    Bauman D, Chrzumnicka E, Mykowska E, Szybowicz M, Grzelczak N (2005) J Mol Struct 744–747:307CrossRefGoogle Scholar
  10. 10.
    Balcerzak A (2005) Mol Quan Acoust 26:7Google Scholar
  11. 11.
    Bogoslovov RB, Roland CM, Czub J, Urban S (2008) J Phys Chem B 112:16008CrossRefGoogle Scholar
  12. 12.
    Raszewski Z, Kedzierski J, Rutkowska J, Zieliski J, Mija J, Dabrowski RD, Opara T (1993) Liq Cryst 14:1959CrossRefGoogle Scholar
  13. 13.
    Jadzyn J, Hellemans L, Czechowski G, Legrand C, Douali R (2000) Liq Cryst 27:613CrossRefGoogle Scholar
  14. 14.
    Kopčanský P, Potočová I, Koneracká M, Timko M, Jansen AGM, Jadzyn J, Czechowski G (2005) J Magn Magn Mater 289:101CrossRefGoogle Scholar
  15. 15.
    Tomašovičová N, Kopčanský P, Koneracká M, Tomčo L, Závišová V, Timko M, Éber N, Fodor-Csorba K, Tóth-Katona T, Vajda A, Jadzyn J (2008) J Phys: Condens Matter 20:204123CrossRefGoogle Scholar
  16. 16.
    Kopanský P, Koneracká M, Timko M, Jadzyn J (2005) Phys Status Solidi (b) 243:317CrossRefGoogle Scholar
  17. 17.
    Kopcanský P, Tomasovicová N, Koneracká M, Závisová V, Timko M, Dzarová A, Sprincová A, Eber N, Fodor-Csorba K, Tóth-Katona T, Vajda A, Jadzyn J (2008) Phys Rev E 78:011702CrossRefGoogle Scholar
  18. 18.
    Witko W, Padoł AM, Zieliński PM (2007) Phase Trans 80:717CrossRefGoogle Scholar
  19. 19.
    Biswas S, Haldar S, Mandal PK, Goubitz K, Schenk H, Dabrowski R (2007) Cryst Res Technol 42:1029CrossRefGoogle Scholar
  20. 20.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 revision D01. Gaussian Inc., Wallingford CTGoogle Scholar
  21. 21.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  22. 22.
    Foresman JB, Frisch AE (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc., Pittsburgh, PAGoogle Scholar
  23. 23.
    Allinger NL, Yuh YH, Lii J-H (1989) J Am Chem Soc 111:8551CrossRefGoogle Scholar
  24. 24.
    Lii J-H, Allinger NL (1989) J Am Chem Soc 111:8576CrossRefGoogle Scholar
  25. 25.
    Lokanath NK, Revannasiddaiah D, Sridhar MA, Prasad JS (2001) Mol Cryst Liq Cryst 364:703CrossRefGoogle Scholar
  26. 26.
    Grimme S (2004) J Comput Chem 12:1463CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Maciej Szaleniec
    • 1
  • Renata Tokarz-Sobieraj
    • 1
  • Wacław Witko
    • 2
  1. 1.Institute of Catalysis and Surface ChemistryPolish Academy of SciencesKrakówPoland
  2. 2.Henryk Niewodniczański Institute of Nuclear PhysicsPolish Academy of SciencesKrakówPoland

Personalised recommendations