Journal of Molecular Modeling

, Volume 15, Issue 6, pp 723–729

Expansion of the σ-hole concept

Original Paper


The term “σ-hole” originally referred to the electron-deficient outer lobe of a half-filled p (or nearly p) orbital involved in forming a covalent bond. If the electron deficiency is sufficient, there can result a region of positive electrostatic potential which can interact attractively (noncovalently) with negative sites on other molecules (σ-hole bonding). The interaction is highly directional, along the extension of the covalent bond giving rise to the σ-hole. σ-Hole bonding has been observed, experimentally and computationally, for many covalently-bonded atoms of Groups V–VII. The positive character of the σ-hole increases in going from the lighter to the heavier (more polarizable) atoms within a Group, and as the remainder of the molecule becomes more electron-withdrawing. In this paper, we show computationally that significantly positive σ-holes, and subsequent noncovalent interactions, can also occur for atoms of Group IV. This observation, together with analogous ones for the molecules (H3C)2SO, (H3C)2SO2 and Cl3PO, demonstrates a need to expand the interpretation of the origins of σ-holes: (1) While the bonding orbital does require considerable p character, in view of the well-established highly directional nature of σ-hole bonding, a sizeable s contribution is not precluded. (2) It is possible for the bonding orbital to be doubly-occupied and forming a coordinate covalent bond.


Two views of the calculated electrostatic potential on the 0.001 au molecular surface of SiCl4. Color ranges, in kcal/mole, are: purple, negative; blue, between 0 and 8; green, between 8 and 11; yellow, between 11 and 18; red, more positive than 18. The top view shows three of the four chlorines. In the center is the σ-hole due to the fourth Cl−Si bond, its most positive portion (red) being on the extension of that bond. In the bottom view are visible two of the σ-holes on the silicon. In both views can be seen the σ-holes on the chlorines, on the extensions of the Si−Cl bonds; their most positive portions are green


Electrostatic potentials Group IV atoms Noncovalent interactions σ-hole σ-hole bonding 

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of New OrleansNew OrleansUSA
  2. 2.Department of ChemistryCleveland State UniversityClevelandUSA

Personalised recommendations