Journal of Molecular Modeling

, Volume 15, Issue 6, pp 723–729 | Cite as

Expansion of the σ-hole concept

Original Paper


The term “σ-hole” originally referred to the electron-deficient outer lobe of a half-filled p (or nearly p) orbital involved in forming a covalent bond. If the electron deficiency is sufficient, there can result a region of positive electrostatic potential which can interact attractively (noncovalently) with negative sites on other molecules (σ-hole bonding). The interaction is highly directional, along the extension of the covalent bond giving rise to the σ-hole. σ-Hole bonding has been observed, experimentally and computationally, for many covalently-bonded atoms of Groups V–VII. The positive character of the σ-hole increases in going from the lighter to the heavier (more polarizable) atoms within a Group, and as the remainder of the molecule becomes more electron-withdrawing. In this paper, we show computationally that significantly positive σ-holes, and subsequent noncovalent interactions, can also occur for atoms of Group IV. This observation, together with analogous ones for the molecules (H3C)2SO, (H3C)2SO2 and Cl3PO, demonstrates a need to expand the interpretation of the origins of σ-holes: (1) While the bonding orbital does require considerable p character, in view of the well-established highly directional nature of σ-hole bonding, a sizeable s contribution is not precluded. (2) It is possible for the bonding orbital to be doubly-occupied and forming a coordinate covalent bond.


Two views of the calculated electrostatic potential on the 0.001 au molecular surface of SiCl4. Color ranges, in kcal/mole, are: purple, negative; blue, between 0 and 8; green, between 8 and 11; yellow, between 11 and 18; red, more positive than 18. The top view shows three of the four chlorines. In the center is the σ-hole due to the fourth Cl−Si bond, its most positive portion (red) being on the extension of that bond. In the bottom view are visible two of the σ-holes on the silicon. In both views can be seen the σ-holes on the chlorines, on the extensions of the Si−Cl bonds; their most positive portions are green


Electrostatic potentials Group IV atoms Noncovalent interactions σ-hole σ-hole bonding 


  1. 1.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296. doi: 10.1007/s00894-006-0130-2 CrossRefGoogle Scholar
  2. 2.
    Metrangolo P, Neukirsch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395. doi: 10.1021/ar0400995 CrossRefGoogle Scholar
  3. 3.
    Metrangolo P, Resnati G (eds) (2008) Halogen Bonding: Fundamentals and Applications, Structure and Bonding No. 126. Springer, BerlinGoogle Scholar
  4. 4.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311. doi: 10.1007/s00894-006-0154-7 CrossRefGoogle Scholar
  5. 5.
    Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem Quantum Biol Symp 19:57–64. doi: 10.1002/qua.560440709 CrossRefGoogle Scholar
  6. 6.
    Murray JS, Paulsen K, Politzer P (1994) Proc Indiana Acad Sci 106:267–275 Chem SciGoogle Scholar
  7. 7.
    Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Proc Natl Acad Sci USA 101:16789–16794. doi: 10.1073/pnas.0407607101 CrossRefGoogle Scholar
  8. 8.
    Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650. doi: 10.1007/s00894-007-0176-9 CrossRefGoogle Scholar
  9. 9.
    Wang Y-H, Lu Y-X, Zou J-W, Yu Q-S (2008) Int J Quantum Chem 108:1083–1089. doi: 10.1002/qua.21583 CrossRefGoogle Scholar
  10. 10.
    Riley KE, Murray JS, Concha MC, Politzer P, Hobza P (2008) J Chem Theory Comput (in press)Google Scholar
  11. 11.
    Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:3046–3052. doi: 10.1002/qua.21352 CrossRefGoogle Scholar
  12. 12.
    Murray JS, Clark T, Lane P, Politzer P (2007) J Mol Model 13:1033–1038. doi: 10.1007/s00894-007-0225-4 CrossRefGoogle Scholar
  13. 13.
    Politzer P, Murray JS (2008) Ann Eur Acad Sci (in press)Google Scholar
  14. 14.
    Clark T, Murray JS, Lane P, Politzer P (2008) J Mol Model 14:689–697. doi: 10.1007/s00894-008-0279-y CrossRefGoogle Scholar
  15. 15.
    Stewart RF (1979) Chem Phys Lett 65:335–342. doi: 10.1016/0009-2614(79)87077-3 CrossRefGoogle Scholar
  16. 16.
    Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkGoogle Scholar
  17. 17.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979. doi: 10.1021/ja00260a006 CrossRefGoogle Scholar
  18. 18.
    Murray JS, Politzer P (1998) J Mol Struct THEOCHEM 425:107–114 . doi: 10.1016/S0166-1280(97)00162-0 CrossRefGoogle Scholar
  19. 19.
    Politzer P, Murray JS (1999) Trends. Chem Phys 7:157–165Google Scholar
  20. 20.
    Politzer P, Murray JS (2001) Fluid Phase Equil 185:129–137. doi: 10.1016/S0378-3812(01)00463-0 CrossRefGoogle Scholar
  21. 21.
    Hagelin H, Brinck T, Murray JS, Berthelot M, Politzer P (1995) Can J Chem 73:483–488. doi: 10.1139/v95-063 CrossRefGoogle Scholar
  22. 22.
    Grimme S (2006) J Comput Chem 27:1787–1799. doi: 10.1002/jcc.20495 CrossRefGoogle Scholar
  23. 23.
    Murray JS, Politzer P (2008) Croat Chem Acta (in press)Google Scholar
  24. 24.
    Ramasabbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308–4314. doi: 10.1021/ja00275a012 CrossRefGoogle Scholar
  25. 25.
    Rosenfeld RE Jr, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4860–4862. doi: 10.1021/ja00456a072 CrossRefGoogle Scholar
  26. 26.
    Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665. doi: 10.1007/s00894-008-0280-5 CrossRefGoogle Scholar
  27. 27.
    Bondi A (1964) J Phys Chem 68:441–451. doi: 10.1021/j100785a001 CrossRefGoogle Scholar
  28. 28.
    Ignatyev IS, Schaefer HF III (2001) J Phys Chem A 105:7665–7671. doi: 10.1021/jp0104334 CrossRefGoogle Scholar
  29. 29.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926. doi: 10.1021/cr00088a005 CrossRefGoogle Scholar
  30. 30.
    Olie K (1971) Acta Crystallogr B 27:1459–1460. doi: 10.1107/S0567740871004138 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of New OrleansNew OrleansUSA
  2. 2.Department of ChemistryCleveland State UniversityClevelandUSA

Personalised recommendations