Journal of Molecular Modeling

, Volume 15, Issue 4, pp 433–446 | Cite as

The zinc complex catalyzed hydration of alkyl isothiocyanates

  • Wilhelm A. Eger
  • Burkhard O. Jahn
  • Ernst Anders
Original Paper


Based upon our preceding studies of the hydration of CO2, COS and CS2, accelerated by the carbonic anhydrase (CA) using simplified [ZnL3OH]+ complexes as model catalysts, we calculated the hydration mechanisms of both the uncatalyzed and the [ZnL3OH]+-catalyzed reactions (L = NH3) of isothiocyanates RNCS on the B3LYP/6-311+G(d,p) level of theory. Interestingly, the transition state for the favored metal mediated reaction with the lowest Gibbs free energy is only slightly higher than in the case of CO2 (depending on the attacking atom (N or S). Calculations under inclusion of solvent corrections show a reduction of the selectivity and a slight decrease of the Gibbs free energy in the rate-determining steps. The most plausible pathway prefers the mechanism via a Lindskog proton-shift transition state leading to the thermodynamically most stable product, the carbamatic-S-acid. Furthermore, powerful electron withdrawing substituents R of the cumulenic substrates influence the selectivity of the reaction to a significant extent. Especially the CF3-group in trifluoromethylisothiocyanate reverses the selectivity. This investigation demonstrates that reaction principles developed by nature can be translated to develop efficient catalytic methods, in this case presumably for the transformation of a wide variety of heterocumulenes aside from CO2, COS and CS2.


Competing transition structures for the [ZnL3OH]+-mediated activation of isothiocyanates


Carbonic anhydrase Density functional calculations Enzyme models Isothiocyanate fixation 



Financial support by the Deutsche Forschungsgemeinschaft (Collaborative Research Center 436, University of Jena, Germany), the Fonds der Chemischen Industrie (Germany), and the Thüringer Ministerium für Wissenschaft, Forschung und Kunst (Erfurt, Germany) is gratefully acknowledged.

Supplementary material

894_2008_385_MOESM1_ESM.pdf (277 kb)
ESM 1 (PDF 277 KB).


  1. 1.
    Thoms S (2002) J Theor Biol 215:399–404. doi: 10.1006/jtbi.2002.2528 CrossRefGoogle Scholar
  2. 2.
    Bertini I, Luchinat C (1983) Acc Chem Res 16:272–279. doi: 10.1021/ar00092a002 CrossRefGoogle Scholar
  3. 3.
    Silverman DN, Lindskog S (1988) Acc Chem Res 21:30–36. doi: 10.1021/ar00145a005 CrossRefGoogle Scholar
  4. 4.
    Christianson DW, Fierke CA (1996) Acc Chem Res 29:331–339. doi: 10.1021/ar9501232 CrossRefGoogle Scholar
  5. 5.
    Lipscomb WN, Norbert S (1996) Chem Rev 96:2375–2433. doi: 10.1021/cr950042j CrossRefGoogle Scholar
  6. 6.
    Maren TH (1967) Physiol Rev 47:595–781Google Scholar
  7. 7.
    Tashian RE (1989) Bioessays 10:186–192. doi: 10.1002/bies.950100603 CrossRefGoogle Scholar
  8. 8.
    Khalifah RG (1971) J Biol Chem 246:2561–2573Google Scholar
  9. 9.
    Heck RW, Boriack-Sjodin AP, Qian M, Tu C, Christianson WD, Laipis JP, Silverman ND (1996) Biochemistry 35:11605–11611. doi: 10.1021/bi9608018 CrossRefGoogle Scholar
  10. 10.
    Hartmann M, Clark T, van Eldik R (1996) J Mol Model 2:358–361. doi: 10.1007/s0089460020358 CrossRefGoogle Scholar
  11. 11.
    Hartmann M, Merz JKM, van Eldik R, Clark T (1998) J Mol Model 4:355–365. doi: 10.1007/s008940050094 CrossRefGoogle Scholar
  12. 12.
    Merz JKM, Hoffmann R, Dewar MJS (1989) J Am Chem Soc 111:5636–5649. doi: 10.1021/ja00197a021 CrossRefGoogle Scholar
  13. 13.
    Muguruma C (1999) THEOCHEM 461–462:439–452. doi: 10.1016/S0166-1280(98)00455-2 CrossRefGoogle Scholar
  14. 14.
    Schenk S, Kesselmeier J, Anders E (2004) Chem Eur J 10:3091–3105. doi: 10.1002/chem.200305754 CrossRefGoogle Scholar
  15. 15.
    Notni J, Schenk S, Protschill-Krebs G, Kesselmeier J, Anders E (2007) ChemBioChem 8:530–536. doi: 10.1002/cbic.200600436 CrossRefGoogle Scholar
  16. 16.
    Notni J, Schenk S, Görls H, Breitzke H, Anders E (2008) Inorg Chem 47:1382–1390. doi: 10.1021/ic701899u CrossRefGoogle Scholar
  17. 17.
    Mauksch M, Bräuer M, Weston J, Anders E (2001) ChemBioChem 2:190–198. doi: 10.1002/1439-7633(20010302)2:3<190::AID-CBIC190>3.0.CO;2-7 CrossRefGoogle Scholar
  18. 18.
    Schröder D, Schwarz H, Schenk S, Anders E (2003) Angew Chem Int Ed 42:5087–5090. doi: 10.1002/anie.200351440 CrossRefGoogle Scholar
  19. 19.
    Prince RH, Woolley PR (1973) Bioorg Chem 2:337–344. doi: 10.1016/0045-2068(73)90034-5 CrossRefGoogle Scholar
  20. 20.
    Tautermann CS, Loferer MJ, Voegele AF, Liedl KR (2003) J Phys Chem B 107:12013–12020. doi: 10.1021/jp0353789 CrossRefGoogle Scholar
  21. 21.
    Sola M, Lledos A, Duran M, Bertran J (1992) J Am Chem Soc 114:869–877. doi: 10.1021/ja00029a010 CrossRefGoogle Scholar
  22. 22.
    Pocker Y, Deits TL (1982) J Am Chem Soc 104:2424–2434. doi: 10.1021/ja00373a016 CrossRefGoogle Scholar
  23. 23.
    Nakata K, Shimomura N, Shiina N, Izumi M, Ichikawa K, Shiro M (2002) J Inorg Biochem 89:255–266. doi: 10.1016/S0162-0134(01)00419-6 CrossRefGoogle Scholar
  24. 24.
    Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter Mater Phys 37:785–789Google Scholar
  25. 25.
    Becke AD (1993) J Chem Phys 98:5648–5652. doi: 10.1063/1.464913 CrossRefGoogle Scholar
  26. 26.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648. doi: 10.1063/1.438980 CrossRefGoogle Scholar
  27. 27.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654. doi: 10.1063/1.438955 CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280. doi: 10.1016/0009-2614(90)80029-D CrossRefGoogle Scholar
  29. 29.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506. doi: 10.1016/0009-2614(88)85250-3 CrossRefGoogle Scholar
  30. 30.
    David EW, Dunning TH Jr (1993) J Chem Phys 98:1358–1371. doi: 10.1063/1.464634 CrossRefGoogle Scholar
  31. 31.
    Rick AK, Dunning TH Jr, Robert JH (1992) J Chem Phys 96:6796–6806. doi: 10.1063/1.462569 CrossRefGoogle Scholar
  32. 32.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001. doi: 10.1021/jp9716997 CrossRefGoogle Scholar
  33. 33.
    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681. doi: 10.1002/jcc.10189 CrossRefGoogle Scholar
  34. 34.
    Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805. doi: 10.1039/p29930000799 Google Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian03 revision D.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  36. 36.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0 Theroretical Chemistry Institute, University of Winsconsin, MadisonGoogle Scholar
  37. 37.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926. doi: 10.1021/cr00088a005 CrossRefGoogle Scholar
  38. 38.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746. doi: 10.1063/1.449486 CrossRefGoogle Scholar
  39. 39.
    Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073. doi: 10.1063/1.445134 CrossRefGoogle Scholar
  40. 40.
    Hagemann H (1983) Methoden d.r Organischen Chemie (Houben-Weyl): Kohlensaeure-Derivate. Georg Thieme Verlag, StuttgartGoogle Scholar
  41. 41.
    Walter W, Bode KD (1967) Angew 7:285–328. doi: 10.1002/ange.19670790702 CrossRefGoogle Scholar
  42. 42.
    Browne DW, Dyson GM (1931) J Chem Soc 3285–3308. doi: 10.1039/jr9310003285
  43. 43.
    Rao CNR, Venkataraghavan R (1962) Tetrahedron 18:531–537. doi: 10.1016/S0040-4020(01)92703-6 CrossRefGoogle Scholar
  44. 44.
    Harris JF (1960) J Am Chem Soc 82:155–158. doi: 10.1021/ja01486a036 CrossRefGoogle Scholar
  45. 45.
    Hadad CM, Rablen PR, Wiberg KB (1998) J Org Chem 63:8668–8681. doi: 10.1021/jo972180+ CrossRefGoogle Scholar
  46. 46.
    Nilsson Lill SO, Rauhut G, Anders E (2003) Chem Eur J 9:3143–3153. doi: 10.1002/chem.200304878 CrossRefGoogle Scholar
  47. 47.
    Bottoni A, Lanza CZ, Miscione GP, Spinelli D (2004) J Am Chem Soc 126:1542–1550. doi: 10.1021/ja030336j CrossRefGoogle Scholar
  48. 48.
    Kimura E (2001) Acc Chem Res 34:171–179. doi: 10.1021/ar000001w CrossRefGoogle Scholar
  49. 49.
    Mulliken RS (1955) J Chem Phys 23:1833–1840. doi: 10.1063/1.1740588 CrossRefGoogle Scholar
  50. 50.
    Fonseca Guerra C, Handgraaf J-W, Baerends EJ, Bickelhaupt FM (2004) J Comput Chem 25:189–210. doi: 10.1002/jcc.10351 CrossRefGoogle Scholar
  51. 51.
    Eriksson AE, Jones TA, Liljas A (1988) Prot Struct Funct Genet 4:274–282. doi: 10.1002/prot.340040406 CrossRefGoogle Scholar
  52. 52.
    Lindskog S, Engberg P, Forsman C, Ibrahim AS, Jonsson HB, Simonsson I, Tibell L (1987) Ann N Y Acad Sci 429:61–75. doi: 10.1111/j.1749-6632.1984.tb12315.x CrossRefGoogle Scholar
  53. 53.
    Liang J-Y, Lipscomb WN (1987) Biochemistry 26:5293–5301. doi: 10.1021/bi00391a012 CrossRefGoogle Scholar
  54. 54.
    Miscione GP, Stenta M, Spinelli D, Anders E, Bottoni A (2007) Theor Chem Acc 118:193–201. doi: 10.1007/s00214-007-0274-x CrossRefGoogle Scholar
  55. 55.
    Notni J, Günther W, Anders E (2007) Eur J Inorg Chem 7:985–993. doi: 10.1002/ejic.200600962 CrossRefGoogle Scholar
  56. 56.
    Notni J, Schenk S, Roth A, Plass W, Görls H, Uhlemann U, Walter A, Schmitt M, Popp J, Chatzipapadopoulos S, Emmler T, Breitzke H, Leppert J, Buntkowsky G, Kempe K, Anders E (2006) Eur J Inorg Chem 14:2783–2791. doi: 10.1002/ejic.200500948 CrossRefGoogle Scholar
  57. 57.
    Kimura E (1994) Prog Inorg Chem 41:443–491. doi: 10.1002/9780470166420.ch6 CrossRefGoogle Scholar
  58. 58.
    Kimura E, Koike T, Shionoya M (1997) Struct Bond 89:1–28Google Scholar
  59. 59.
    Kimura E, Shiota T, Koike T, Shiro M, Kodama M (1990) J Am Chem Soc 112:5805–5811. doi: 10.1021/ja00171a020 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Wilhelm A. Eger
    • 1
  • Burkhard O. Jahn
    • 1
  • Ernst Anders
    • 1
  1. 1.Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaJenaGermany

Personalised recommendations