Cellular interaction through LewisX cluster: theoretical studies

  • Yun Luo
  • Florent Barbault
  • Chafika Gourmala
  • Yongmin Zhang
  • François Maurel
  • Yongzhou Hu
  • Bo Tao Fan
Original Paper


It is well known that cell surface carbohydrates play a role in cell–cell adhesion and communication. LewisX glycosphingolipids form microdomains on cell surfaces. Homotypic and calcium-mediated LewisX–LewisX (LeX-LeX) interactions were proposed to be responsible for the initial steps of cell adhesion, and to mediate embryogenesis and metastasis. Various techniques have been used to investigate such interactions, but little information is available on the geometry and the mechanism of dimerisation. To better understand these interactions, a new molecular model was developed to simulate homotypic interactions in explicit solvent with and without calcium ions. Accurate analysis of both trajectories yielded valuable information about the energetics of LeX-LeX dimerisation. Detailed interpretation of the hydrogen bond network and the presence of calcium ions along the trajectory provide valuable insights into the role of calcium ions in this carbohydrate–carbohydrate interaction.


Calcium population density around the LewisX carbohydrate (after the trajectory has been fitted to the primary unit cell). All central dimer coordinates are fitted along the time axis, whereas calcium ion positions are recorded and represented as points. The clouds of points indicate that the ions are not randomly placed around the dimer but take up preferred positions


LewisX Molecular dynamics Carbohydrate interactions Carbohydrate clusters Cellular adhesion 



We are indebted to Paris–Diderot University and the French embassy in China for the award of a PhD fellowship to Yun Luo. This work is dedicated to the memory of Professor BoTao Fan, who died on 22 October 2006, who initiated and led this project.


  1. 1.
    Mammen M, Choi S-K, Whitesides GM (1998) Angew Chem Int Ed 37:2754–2794CrossRefGoogle Scholar
  2. 2.
    Dwek RA (1996) Chem Rev 96:683–720CrossRefGoogle Scholar
  3. 3.
    Eggens I, Fenderson B, Toyokuni T, Dean B, Stroud M, Hakomori S (1989) J Biol Chem 264:9476–9484Google Scholar
  4. 4.
    Hakomori S (1996) Cancer Res 56:5309–5318Google Scholar
  5. 5.
    Kojima N, Fenderson BA, Stroud MR, Goldberg RI, Habermann R, Toyokuni T, Hakomori S (1994) Glycoconj J 11:238–248CrossRefGoogle Scholar
  6. 6.
    Kannagi R, Nudelman E, Levery SB, Hakomori S (1982) J Biol Chem 257:14865–14874Google Scholar
  7. 7.
    Solter D, Knowles BB (1978) Proc Natl Acad Sci USA 75:5565–5569CrossRefGoogle Scholar
  8. 8.
    Hakomori S, Nudelman E, Levery SB, Kannagi R (1984) J Biol Chem 259:4672–4680Google Scholar
  9. 9.
    Singhal AK, Orntoft TF, Nudelman E, Nance S, Schibig L, Stroud MR, Clausen H, Hakomori S (1990) Cancer Res 50:1375–1380Google Scholar
  10. 10.
    Yang HJ, Hakomori SI (1971) J Biol Chem 246:1192–1200Google Scholar
  11. 11.
    Yuan M, Itzkowitz SH, Ferrell LD, Fukushi Y, Palekar A, Hakomori S, Kim YS (1987) J Natl Cancer Inst 78:479–488Google Scholar
  12. 12.
    Gege C, Geyer A, Schmidt RR (2002) Eur J Org Chem 2002:2475–2485CrossRefGoogle Scholar
  13. 13.
    Geyer A, Gege C, Schmidt RR (1999) Angew Chem Int Ed 38:1466–1468CrossRefGoogle Scholar
  14. 14.
    Geyer A, Gege C, Schmidt RR (2000) Angew Chem Int Ed 39:3245–3249CrossRefGoogle Scholar
  15. 15.
    Henry B, Desvaux H, Pristchepa M, Berthault P, Zhang YM, Mallet JM, Esnault J, Sinay P (1999) Carbohydr Res 315:48–62CrossRefGoogle Scholar
  16. 16.
    Wormald MR, Edge CJ, Dwek RA (1991) Biochem Biophys Res Commun 180:1214–1221CrossRefGoogle Scholar
  17. 17.
    Siuzdak G, Ichikawa Y, Caufield TJ, Munoz B, Wong C-H, Nicolaou KC (1993) J Am Chem Soc 115:2877–2881CrossRefGoogle Scholar
  18. 18.
    Hernaiz MJ, de la Fuente JM, Barrientos AG, Penades S (2002) Angew Chem Int Ed 41:1554–1557CrossRefGoogle Scholar
  19. 19.
    Gourier C, Pincet F, Perez E, Zhang Y, Mallet JM, Sinay P (2004) Glycoconj J 21:165–174CrossRefGoogle Scholar
  20. 20.
    Gourier C, Pincet F, Perez E, Zhang Y, Zhu Z, Mallet JM, Sinay P (2005) Angew Chem Int Ed 44:1683–1687CrossRefGoogle Scholar
  21. 21.
    Pincet F, Le Bouar T, Zhang Y, Esnault J, Mallet JM, Perez E, Sinay P (2001) Biophys J 80:1354–1358Google Scholar
  22. 22.
    Tromas C, Rojo J, de la Fuente JM, Barrientos AG, Garcia R, Penades S (2001) Angew Chem Int Ed 40:3252–3255CrossRefGoogle Scholar
  23. 23.
    Boubelik M, Floryk D, Bohata J, Draberova L, Macak J, Smid F, Draber P (1998) Glycobiology 8:139–146CrossRefGoogle Scholar
  24. 24.
    de la Fuente JM, Eaton P, Barrientos AG, Menendez M, Penades S (2005) J Am Chem Soc 127:6192–6197CrossRefGoogle Scholar
  25. 25.
    Gourmala C, Luo Y, Barbault F, Zhang Y, Ghalem S, Maurel F, Fan BT (2007) J Mol Struct Theochem 821:22–29CrossRefGoogle Scholar
  26. 26.
    Woods RJ, Dwek RA, Edge CJ, Fraser-Reid B. Glycam Biomolecule Builder http://www.glycam.com/CCRC/biombuilder/biomb_index.jsp
  27. 27.
    Case D, Darden T, Cheatham T, Simmerling C, Wang J, Duke R, Luo R, Merz K, Pearlman D, Crowley M, Walker R, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong K, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews D, Schafmeister C, Ross W, Kollman P (2006) AMBER University of CaliforniaGoogle Scholar
  28. 28.
    Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:1578–1599Google Scholar
  29. 29.
    Tsui V, Case DA (2001) Biopolymers 56:275–291CrossRefGoogle Scholar
  30. 30.
    Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) J Comp Chem 16:1357–1377CrossRefGoogle Scholar
  31. 31.
    SYBYL Tripos, http://www.tripos.com
  32. 32.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheesman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennuci B, Cossi M, Scalmani G, Rega N, Pertesson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jamarillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachri K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, LIashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Wallingford, CTGoogle Scholar
  33. 33.
    Bayly C, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10272CrossRefGoogle Scholar
  34. 34.
    Perez S, Mouhous-Riou N, Nifant’ev NE, Tsvetkov YE, Bachet B, Imberty A (1996) Glycobiology 6:537–542CrossRefGoogle Scholar
  35. 35.
    Aqvist J (1990) J Phys Chem 94:8021–8024CrossRefGoogle Scholar
  36. 36.
    Bartolotti LJ, Pedersen LG, Charifson PS (1991) J Comp Chem 12:1125–1128CrossRefGoogle Scholar
  37. 37.
    Kirschner KN, Woods RJ (2001) Proc Natl Acad Sci USA 98:10541–10545CrossRefGoogle Scholar
  38. 38.
    Woods RJ, Dwek RA, Edge CJ, Fraser-Reid B (1995) J Phys Chem 99:3832–3846CrossRefGoogle Scholar
  39. 39.
    Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  40. 40.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341CrossRefGoogle Scholar
  41. 41.
    Barbault F, Gourmala C, Zhang Y, Ghalem S, Fan BT (2005) CMTPI, ShanghaiGoogle Scholar
  42. 42.
    Berendsen HJC, Postma JPM, van Gusteren WF (1984) J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  43. 43.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38CrossRefGoogle Scholar
  44. 44.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE 3rd (2000) Acc Chem Res 33:889–897CrossRefGoogle Scholar
  45. 45.
    Massova I, Kollman PA (1999) J Am Chem Soc 121:8133–8143CrossRefGoogle Scholar
  46. 46.
    Wang J, Morin P, Wang W, Kollman PA (2001) J Am Chem Soc 123:5221–5230CrossRefGoogle Scholar
  47. 47.
    Wang W, Kollman PA (2001) Proc Natl Acad Sci USA 98:14937–14942CrossRefGoogle Scholar
  48. 48.
    Luo R, David L, Gilson MK (2002) J Comp Chem 23:1244–1253CrossRefGoogle Scholar
  49. 49.
    Sitkoff D, Sharp KA, Honig B (1994) Biophys Chem 51:397–403, see discussion pp 404–399CrossRefGoogle Scholar
  50. 50.
    Sitkoff D, Lockhart DJ, Sharp KA, Honig B (1994) Biophys J 67:2251–2260CrossRefGoogle Scholar
  51. 51.
    Koradi R, Billeter M, Wuthrich K (1996) J Mol Graph 14:51–55, 29–32CrossRefGoogle Scholar
  52. 52.
    Gourmala C, Zhu Z, Luo Y, Fan BT, Ghalem S, Hu Y, Zhang Y (2005) Tetrahedron Asymmetry 16:3024–3029CrossRefGoogle Scholar
  53. 53.
    Luo Y, Dong D, Barbault F, Fan BT, Hu Y, Zhang Y (2008) C R Chimie 11:29–37Google Scholar
  54. 54.
    Luo Y, Gourmala C, Dong D, Barbault F, Fan BT, Hu YZ, Zhang Y (2008) Glycoconj J (25:335–344), doi: 10.1007/s10719-10007-19077-10715
  55. 55.
    Imberty A, Breton C, Oriol R, Mollicone R, Perez S (2003) Adv Macromol Carbohydr Res 2:67–130Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Yun Luo
    • 1
    • 2
    • 3
  • Florent Barbault
    • 1
  • Chafika Gourmala
    • 1
  • Yongmin Zhang
    • 2
  • François Maurel
    • 1
  • Yongzhou Hu
    • 3
  • Bo Tao Fan
    • 1
  1. 1.ITODYS, CNRS UMR 7086Université Paris DiderotParisFrance
  2. 2.Laboratoire de Chimie Organique, CNRS UMR 7611, Institut de Chimie Moléculaire (FR 2769)Université Pierre et Marie CurieParisFrance
  3. 3.ZJU-ENS Joint Laboratory of Medicinal ChemistryZhejiang UniversityHangzhouChina

Personalised recommendations