Journal of Molecular Modeling

, Volume 14, Issue 8, pp 769–775 | Cite as

A reexamination of the propensities of amino acids towards a particular secondary structure: classification of amino acids based on their chemical structure

  • Saša N. Malkov
  • Miodrag V. Živković
  • Miloš V. Beljanski
  • Michael B. Hall
  • Snežana D. Zarić
Original Paper


The correlation between the primary and secondary structures of proteins was analysed using a large data set from the Protein Data Bank. Clear preferences of amino acids towards certain secondary structures classify amino acids into four groups: α-helix preferrers, strand preferrers, turn and bend preferrers, and His and Cys (the latter two amino acids show no clear preference for any secondary structure). Amino acids in the same group have similar structural characteristics at their Cβ and Cγ atoms that predicts their preference for a particular secondary structure. All α-helix preferrers have neither polar heteroatoms on Cβ and Cγ atoms, nor branching or aromatic group on the Cβ atom. All strand preferrers have aromatic groups or branching groups on the Cβ atom. All turn and bend preferrers have a polar heteroatom on the Cβ or Cγ atoms or do not have a Cβ atom at all. These new rules could be helpful in making predictions about non-natural amino acids.


Amino acid Protein Protein secondary structure Statistical correlation 



This work was supported under projects, No 142037 and No 144030 by the Ministry of Science of the Republic of Serbia. M.B.H. acknowledges the support of the National Science Foundation, USA (CHE-0518074).


  1. 1.
    Bowie JU, Luthy R, Eisenberg DA (1992) Science 253:164–170CrossRefGoogle Scholar
  2. 2.
    Chen CC, Singh JP, Altman RB (1999) Bioinformatics 15:53–65CrossRefGoogle Scholar
  3. 3.
    Eyrich VA, Standley DM, Felts AK, Friesner RA (1999) Proteins 35:41–57CrossRefGoogle Scholar
  4. 4.
    Eyrich VA Standley DM, Friesner RA (1999) J Mol Biol 288:725–742CrossRefGoogle Scholar
  5. 5.
    Fischer D, Eisenberg D (1996) Protein Sci 5:947–955Google Scholar
  6. 6.
    Kelley LA, MacCallum RM, Sternberg MJE (2000) J Mol Biol 299:499–520CrossRefGoogle Scholar
  7. 7.
    Koretke KK, Luthey-Schulten L, Wolynes PG (1998) Proc Natl Acad Sci USA 95:2932–2937CrossRefGoogle Scholar
  8. 8.
    Levitt M, Warshel A (1975) Nature 253:694–698CrossRefGoogle Scholar
  9. 9.
    Lomize AL, Pogozheva ID, Mosberg HI (1999) Proteins Suppl 3:199–203CrossRefGoogle Scholar
  10. 10.
    Maiorov VN, Crippen GM (1992) J Mol Biol 227:876–888CrossRefGoogle Scholar
  11. 11.
    Ortiz AR, Kolinski A, Rotkiewicz P, Ilkowsky B, Skolnick J (1999) Proteins Suppl 3:177–185CrossRefGoogle Scholar
  12. 12.
    Rost B (1998) Protein structure prediction in 1D 2D and 3D. In: von Rague-Schleyer P et al (eds) Encyclopedia of computational chemistry. Wiley, Sussex, pp 2242–2255Google Scholar
  13. 13.
    Samudrala R, Xia Y, Huang E, Levitt M (1000) Proteins Suppl 3:194–198Google Scholar
  14. 14.
    Samudrala R, Huang E, Koehl P, Levitt M (2000) Protein Eng 13:453–457CrossRefGoogle Scholar
  15. 15.
    Solis AD, Rackovsky S (2004) Polymer 45:525–546CrossRefGoogle Scholar
  16. 16.
    Chou PY, Fasman GD (1974) Biochemistry 13:222–245CrossRefGoogle Scholar
  17. 17.
    Chou PY, Fasman GD (1978) Adv Enzymol Relat Areas Mol Biol 47:45–148Google Scholar
  18. 18.
    Levitt M (1978) Biochemistry 17:4277–4285CrossRefGoogle Scholar
  19. 19.
    Kim CA, Berg JM (1990) Nature 362:267–270CrossRefGoogle Scholar
  20. 20.
    Minor DL, Kim PS (1994) Nature 367:660–663CrossRefGoogle Scholar
  21. 21.
    O'Neil KT, DeGrado WF (1990) Science 250:646–651CrossRefGoogle Scholar
  22. 22.
    Padmanabhan S, Marqusee S, Ridgeway T, Laue TM, Baldwin RL (1990) Nature 344:268–270CrossRefGoogle Scholar
  23. 23.
    Street AG, Mayo SL (1999) Proc Natl Acad Sci USA 96:9074–9076CrossRefGoogle Scholar
  24. 24.
    Penel S, Hughes E, Doig AJ (1999) J Mol Biol 287:127–143CrossRefGoogle Scholar
  25. 25.
    Petukhov M, Muñoz V, Yumoto N, Yoshikawa S, Serrano L (1998) J Mol Biol 278:279–289CrossRefGoogle Scholar
  26. 26.
    Engel DE, DeGrado WF (2004) J Mol Biol 337(5):1195–1205CrossRefGoogle Scholar
  27. 27.
    Mandel-Gutfreund Y, Gregoret LM (2002) J Mol Biol 323(3):453–61CrossRefGoogle Scholar
  28. 28.
    Fitzkee NC, Fleming PJ, Gong H, Panasik N Jr, Street TO, Rose GD (2005) Trends Biochem Sci 30:73–80CrossRefGoogle Scholar
  29. 29.
    Gong H, Fleming PJ, Rose GD (2005) Proc Natl Acad Sci USA 102(45):16227–16232CrossRefGoogle Scholar
  30. 30.
    Fleming PJ, Gong HP, Rose GD (2006) Prot Sci 15(8):1829–1834CrossRefGoogle Scholar
  31. 31.
    Rose GD, Fleming PJ, Banavar JR, Maritan A (2006) Proc Natl Acad Sci USA 103(45):16623–16633CrossRefGoogle Scholar
  32. 32.
    Baldwin RL (2007) J Mol Biol 371:283–301CrossRefGoogle Scholar
  33. 33.
    Chou PY, Fasman GD (1974) Biochemistry 13(2):211–222CrossRefGoogle Scholar
  34. 34.
    Robson B (1974) Biochem J 141(3):853–867Google Scholar
  35. 35.
    Kabsch W, Sander C (1983) Biopolymers 22(12):2577–2637CrossRefGoogle Scholar
  36. 36.
    Rost B (2001) J Struc Biol 134:204–218CrossRefGoogle Scholar
  37. 37.
    Kloczkowski A, Ting KL, Jernigan RL, Garnier J (2002) Proteins 49:154–166CrossRefGoogle Scholar
  38. 38.
    Samuels ML, Witmer JA (2003) Statistics for the life sciences, 3rd edn. Pearson, New JerseyGoogle Scholar
  39. 39.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235–242CrossRefGoogle Scholar
  40. 40.
    Hobohm U, Sander C (1994) Protein Sci 3:522–524CrossRefGoogle Scholar
  41. 41.
    Gibrat JF, Garnier J, Robson B (1987) J Mol Biol 198:425–443CrossRefGoogle Scholar
  42. 42.
    Bastolla U, Moya A, Viguera E, van Ham RCHJ (2004) J Mol Biol 343:1451–1466CrossRefGoogle Scholar
  43. 43.
    Levitt M, Greer J (1977) J Mol Biol 114:181–239CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Saša N. Malkov
    • 1
  • Miodrag V. Živković
    • 1
  • Miloš V. Beljanski
    • 2
  • Michael B. Hall
    • 3
  • Snežana D. Zarić
    • 4
  1. 1.Department of MathematicsUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of General and Physical ChemistryBelgradeSerbia
  3. 3.Department of ChemistryTexas A&M UniversityCollege StationUSA
  4. 4.Department of ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations