Advertisement

Regulatory phosphorylation of cyclin-dependent kinase 2: insights from molecular dynamics simulations

  • Iveta Bártová
  • Jaroslav Koča
  • Michal Otyepka
Original Paper

Abstract

The structures of fully active cyclin-dependent kinase-2 (CDK2) complexed with ATP and peptide substrate, CDK2 after the catalytic reaction, and CDK2 inhibited by phosphorylation at Thr14/Tyr15 were studied using molecular dynamics (MD) simulations. The structural details of the CDK2 catalytic site and CDK2 substrate binding box were described. Comparison of MD simulations of inhibited complexes of CDK2 was used to help understand the role of inhibitory phosphorylation at Thr14/Tyr15. Phosphorylation at Thr14/Tyr15 causes ATP misalignment for the phosphate-group transfer, changes in the Mg2+ coordination sphere, and changes in the H-bond network formed by CDK2 catalytic residues (Asp127, Lys129, Asn132). The inhibitory phosphorylation causes the G-loop to shift from the ATP binding site, which leads to opening of the CDK2 substrate binding box, thus probably weakening substrate binding. All these effects explain the decrease in kinase activity observed after inhibitory phosphorylation at Thr14/Tyr15 in the G-loop. Interaction of the peptide substrate, and the phosphorylated peptide product, with CDK2 was also studied and compared. These results broaden hypotheses drawn from our previous MD studies as to why a basic residue (Arg/Lys) is preferred at the P+2 substrate position.

Figure

View of the substrate binding site of the fully active cyclin-dependent kinase-2 (CDK2) (pT160-CDK2/cyclin A/ATP). The pThr160 activation site is located in the T-loop (yellow secondary structure). The G-loop, which partly forms the ATP binding site, is shown in blue. The Thr14 and Tyr15 inhibitory phosphorylation sites located in the G-loop are shown in licorice representation

Keywords

CDK regulation Protein substrate Phosphorylation Cell cycle Molecular dynamics simulations 

Notes

Acknowledgements

We thank the Meta Center (http://meta.cesnet.cz) for computer time. The Czech Ministry of Education is acknowledged for financial support; grants: MSM6198959216, MSM0021622413 and LC06030.

References

  1. 1.
    Morgan DO (1997) Annu Rev Cell Dev Biol 13:261–291CrossRefGoogle Scholar
  2. 2.
    Morgan DO (1995) Nature 374:131–134CrossRefGoogle Scholar
  3. 3.
    Gould KL, Nurse P (1989) Nature 342(6245):39–45CrossRefGoogle Scholar
  4. 4.
    Morla AO, Draetta G, Beach D, Wang JYJ (1989) Cell 58(1):193–203CrossRefGoogle Scholar
  5. 5.
    Takizawa CG, Morgan DO (2000) Curr Opin Cell Biol 12(6):658–665CrossRefGoogle Scholar
  6. 6.
    Gu Y, Rosenblatt J, Morgan DO (1992) EMBO J 11:3995–4005Google Scholar
  7. 7.
    Sebastian B, Kakizuka A, Hunter T (1993) Proc Natl Acad Sci USA 90:3521–3524CrossRefGoogle Scholar
  8. 8.
    Watanabe N, Broome M, Hunter T (1995) EMBO J 14(9):1878–1891Google Scholar
  9. 9.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) Science 298:1912–1934CrossRefGoogle Scholar
  10. 10.
    Knockaert M, Greengard P, Meijer L (2002) Trends Pharmacol Sci 23(9):417–425CrossRefGoogle Scholar
  11. 11.
    Meijer L, Raymond E (2003) Acc Chem Res 36(6):417–425CrossRefGoogle Scholar
  12. 12.
    Kannan N, Neuwald AF (2004) Prot Sci 13(8):2059–2077CrossRefGoogle Scholar
  13. 13.
    Bártová I, Koča J, Otyepka M (2008) Prot Sci 17:22–33Google Scholar
  14. 14.
    De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH (1993) Nature 363:595–602CrossRefGoogle Scholar
  15. 15.
    Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP (1995) Nature 376:313–320CrossRefGoogle Scholar
  16. 16.
    Brown NR, Noble MEM, Lawrie AM, Morris MC, Tunnah P, Divita G, Johnson LN, Endicott JA (1999) J Biol Chem 274:8746–8756CrossRefGoogle Scholar
  17. 17.
    Morris MC, Gondeau C, Tainer JA, Divita G (2002) J Biol Chem 277(28):23847–23853CrossRefGoogle Scholar
  18. 18.
    Russo AA, Jeffrey PD, Pavletich NP (1996) Nat Struct Biol 3:696–700CrossRefGoogle Scholar
  19. 19.
    Brown NR, Noble MEM, Endicott JA, Johnson LN (1999) Nat Cell Biol 1:438–443CrossRefGoogle Scholar
  20. 20.
    Songyang Z, Blechner S, Hoagland N, Hoekstra MF, Piwnica-Worms H, Cantley LC (1994) Curr Biol 4(11):973–982CrossRefGoogle Scholar
  21. 21.
    Holmes JK, Solomon MK (1996) J Biol Chem 271(41):25240–25246CrossRefGoogle Scholar
  22. 22.
    Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, AMBER 8. 2004: University of California, San FranciscoGoogle Scholar
  23. 23.
    Wang JM, Cieplak P, Kollman PA (2000) J Comput Chem 21(12):1049–1074CrossRefGoogle Scholar
  24. 24.
    Insight II. In Homology Model, Accelrys Inc.: San DiegoGoogle Scholar
  25. 25.
    Vriend G, WHAT IF. 1997, EMBL: HeidelbergGoogle Scholar
  26. 26.
    Case DA, Pearlman DA, Caldwell JW, Cheatham III TE, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, AMBER 6 1999: University of California, San FranciscoGoogle Scholar
  27. 27.
    Spoel DVD, Buuren ARV, Apol E, Meulenhoff PJ, Tieleman PD, Sijbers ALTM, Hess B, Feenstra KA, Lindhal E, GROMACS. 1991–2002, University of Groningen: GroningenGoogle Scholar
  28. 28.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz JKM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW (1995) J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  29. 29.
    Bártová I, Otyepka M, Kříž Z, Koča J (2004) Prot Sci 13:1449–1457CrossRefGoogle Scholar
  30. 30.
    Otyepka M, Bartova I, Kriz Z, Koca J (2006) J Biol Chem 281(11):7271–7281CrossRefGoogle Scholar
  31. 31.
    Bártová I, Otyepka M, Kříž Z, Koča J (2005) Prot Sci 14:445–451CrossRefGoogle Scholar
  32. 32.
    De Vivo M, Cavalli A, Carloni P, Recanatini M (2007) Chem Eur J 13:8437–8444CrossRefGoogle Scholar
  33. 33.
    Cheng Y, Zhang Y, McCammon JA (2005) J Am Chem Soc 127(5):1553–1562CrossRefGoogle Scholar
  34. 34.
    Cook A, Lowe ED, Chrysina ED, Skamnaki VT, Oikonomakos NG, Johnson LN (2002) Biochemistry 41:7301–7311CrossRefGoogle Scholar
  35. 35.
    Skamnaki VT, Owen DJ, Noble MEM, Lowe ED, Lowe G, Oikonomakos NG, Johnson LN (1999) Biochemistry 38(44):14718–14730CrossRefGoogle Scholar
  36. 36.
    Hanks S, Quinn AM (1991) Methods Enzymol 200:38–62CrossRefGoogle Scholar
  37. 37.
    Welburn JPI, Tucker JA, Johnson T, Lindert L, Morgan M, Willis A, Noble MEM, Endicott JA (2007) J Biol Chem 282(5):3173–3181CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Physical Chemistry and Centre for Biomolecular and Complex Molecular SystemsPalacký UniversityOlomoucCzech Republic
  2. 2.National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations