Advertisement

Journal of Molecular Modeling

, Volume 14, Issue 8, pp 699–704 | Cite as

Blue shifts vs red shifts in σ-hole bonding

  • Jane S. MurrayEmail author
  • Monica C. Concha
  • Pat Lane
  • Pavel Hobza
  • Peter Politzer
Original Paper

Abstract

σ-Hole bonding is a noncovalent interaction between a region of positive electrostatic potential on the outer surface of a Group V, VI, or VII covalently-bonded atom (a σ-hole) and a region of negative potential on another molecule, e.g., a lone pair of a Lewis base. We have investigated computationally the occurrence of increased vibration frequencies (blue shifts) and bond shortening vs decreased frequencies (red shifts) and bond lengthening for the covalent bonds to the atoms having the σ-holes (the σ-hole donors). Both are possible, depending upon the properties of the donor and the acceptor. Our results are consistent with models that were developed earlier by Hermansson and by Qian and Krimm in relation to blue vs red shifting in hydrogen bond formation. These models invoke the derivatives of the permanent and the induced dipole moments of the donor molecule.

Figure

Computed electrostatic potential on the molecular surface of Cl-NO2. Color ranges, in kcal mol−1, are: red, greater than 25; yellow, between 10 and 25; green, between 0 and 10; blue, between −4 and 0; purple, more negative than −4. The chlorine is facing the viewer, to the right. Note the yellow region of positive potential on the outer side of the chlorine, along the extension of the N–Cl bond. The blue region shows the sides of the chlorine to have negative potentials. The calculations were at the B3PW91/6–31G(d,p) level.

Keywords

Blue shifting Electrostatic potentials Hydrogen bonding Noncovalent interactions Permanent and induced dipole moments Red shifting σ-hole bonding 

References

  1. 1.
    Allerhand A, Schleyer PvR (1963) J Am Chem Soc 85:1715CrossRefGoogle Scholar
  2. 2.
    Scheiner S (1997) Hydrogen bonding. A theoretical perspective. Oxford University Press, Oxford, UKGoogle Scholar
  3. 3.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford, UKGoogle Scholar
  4. 4.
    Kryachko ES (2006) Hydrogen bonding-new insights. In: Grabowski SJ (ed), Springer, Dordrecht, The Netherlands, Ch. 8:293–336Google Scholar
  5. 5.
    Maes G, Smets J, Adamowicz L, McCarthy W, VanBael MK, Houben L, Schoone K (1997) J Mol Struct 410–411:315–322Google Scholar
  6. 6.
    Smets J, McCarthy W, Maes G, Adamowicz L (1999) J Mol Struct 476:27–43CrossRefGoogle Scholar
  7. 7.
    Hobza P, Havlas Z (2000) Chem Rev 100:4253–4264CrossRefGoogle Scholar
  8. 8.
    Li X, Liu L, Schlegel HB (2002) J Am Chem Soc 124:9639–9647CrossRefGoogle Scholar
  9. 9.
    Mrázková E, Hobza P (2003) J Phys Chem A 107:1032–1039CrossRefGoogle Scholar
  10. 10.
    Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) J Am Chem Soc 125:5973–5987CrossRefGoogle Scholar
  11. 11.
    Scheiner S, Kar T (2002) J Phys Chem A 106:1784–1789CrossRefGoogle Scholar
  12. 12.
    Parish CA, Dykstra CE (1993) J Phys Chem 97:9374–9379CrossRefGoogle Scholar
  13. 13.
    Masunov A, Dannenberg JJ, Contreras RH (2001) J Phys Chem A 105:4737–4740CrossRefGoogle Scholar
  14. 14.
    Delanoye SN, Herrebout WA, van der Veken BJ (2002) J Am Chem Soc 124:7490–7498CrossRefGoogle Scholar
  15. 15.
    Hermansson K (2002) J Phys Chem A 106:4695–4702CrossRefGoogle Scholar
  16. 16.
    Qian W, Krimm S (2002) J Phys Chem A 106:6628–6636CrossRefGoogle Scholar
  17. 17.
    Hobza P, Havlas Z (1999) Chem Phys Lett 303:447–452CrossRefGoogle Scholar
  18. 18.
    Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052CrossRefGoogle Scholar
  19. 19.
    Wang W, Wang N-B, Zheng W, Tian A (2004) J Phys Chem A 108:1799–1805CrossRefGoogle Scholar
  20. 20.
    Riley KE, Hobza P (2008) J Chem Theor Comput 4:232CrossRefGoogle Scholar
  21. 21.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  22. 22.
    Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem, Quantum Biol Symp 19:57–64CrossRefGoogle Scholar
  23. 23.
    Murray JS, Paulsen K, Politzer P (1994) Proc Indian Acad Sci (Chem Sci) 106:267–275Google Scholar
  24. 24.
    Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Proc Nat Acad Sci 101:16789–16794CrossRefGoogle Scholar
  25. 25.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311CrossRefGoogle Scholar
  26. 26.
    Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038CrossRefGoogle Scholar
  27. 27.
    Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292CrossRefGoogle Scholar
  28. 28.
    Clark T, Murray JS, Lane P, Politzer P, J Mol Model, in pressGoogle Scholar
  29. 29.
    Politzer P, Murray JS, Concha MC, J Mol Model, in pressGoogle Scholar
  30. 30.
    Dumas J-M, Peurichard H, Gomel MJ (1978) Chem Res (S) 54–57Google Scholar
  31. 31.
    Di Paolo T, Sandorfy C (1974) Chem Phys Lett 26:466–469CrossRefGoogle Scholar
  32. 32.
    Di Paolo T, Sandorfy C (1974) Can J Chem 52:3612–3622CrossRefGoogle Scholar
  33. 33.
    Rosenfield Jr RE, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4860–4862CrossRefGoogle Scholar
  34. 34.
    Guru Row TN, Parthasarathy R (1981) J Am Chem Soc 103:477–479CrossRefGoogle Scholar
  35. 35.
    Murray-Rust P, Motherwell WDS (1979) J Am Chem Soc 101:4374–4376CrossRefGoogle Scholar
  36. 36.
    Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) J Am Chem Soc 105:3206–3214CrossRefGoogle Scholar
  37. 37.
    Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308–4314CrossRefGoogle Scholar
  38. 38.
    Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116CrossRefGoogle Scholar
  39. 39.
    Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) J Phys Chem A 104:1617–1620CrossRefGoogle Scholar
  40. 40.
    Romaniello P, Lelj F (2002) J Phys Chem A 106:9114–9119CrossRefGoogle Scholar
  41. 41.
    Iwaoka M, Komatsu H, Katsuda,T, Tomoda S (2002) J Am Chem Soc 124:1902, and papers citedGoogle Scholar
  42. 42.
    Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH (2005) J Am Chem Soc 127:3184–3190CrossRefGoogle Scholar
  43. 43.
    Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) J Am Chem Soc 128:2666–2674CrossRefGoogle Scholar
  44. 44.
    Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem Int Ed 39:1782–1786CrossRefGoogle Scholar
  45. 45.
    Metrangolo P, Neukirsch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395CrossRefGoogle Scholar
  46. 46.
    Metrangolo P, Resnati G, Pilati T, Liantonio R, Meyer F (2007) J Polymer Sci A 45:1–15CrossRefGoogle Scholar
  47. 47.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  48. 48.
    Stewart RF (1972) J Chem Phys 57:1664–1668CrossRefGoogle Scholar
  49. 49.
    Chemical applications of atomic and molecular electrostatic potentials (1981) Politzer P, Truhlar DG (eds) Plenum Press, New YorkGoogle Scholar
  50. 50.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  51. 51.
    Frisch MJ, Trucks GW, Schlegel HB, Scusceria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kuden KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramilo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Ciolowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C. 02. Gaussian. Inc, Wallingford CTGoogle Scholar
  52. 52.
    Sjoberg P, Brinck T (1992) HardSurf programGoogle Scholar
  53. 53.
    Bondi T (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jane S. Murray
    • 1
    • 2
    Email author
  • Monica C. Concha
    • 1
  • Pat Lane
    • 1
  • Pavel Hobza
    • 3
  • Peter Politzer
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of New OrleansNew OrleansUSA
  2. 2.Department of ChemistryCleveland State UniversityClevelandUSA
  3. 3.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular SystemsPrague 6Czech Republic

Personalised recommendations