Skip to main content
Log in

ParaFrag—an approach for surface-based similarity comparison of molecular fragments

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A frequent task in computer-aided drug design is to identify novel chemotypes similar in activity but structurally different to a given reference structure. Here we report the development of a novel method for atom-independent similarity comparison of molecular fragments (substructures of drug-like molecules). The fragments are characterized by their local surface properties coded in the form of 3D pharmacophores. As surface properties, we used the electrostatic potential (MEP), the local ionization energy (IEL), local electron affinity (EAL) and local polarizability (POL) calculated on isodensity surfaces. A molecular fragment can then be represented by a minimal set of extremes for each surface property. We defined a tolerance sphere for each of these extremes, thus allowing us to assess the similarity of fragments in an analogous manner to classical pharmacophore comparison. As a first application of this method we focused on comparing rigid fragments suitable for scaffold hopping. A retrospective analysis of successful scaffold hopping reported for Factor Xa inhibitors [Wood MR et al (2006) J Med Chem 49:1231] showed that our method performs well where atom-based similarity metrics fail.

Encoding surface hotspots as a ParaFrag pharmacophore

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Böhm HJ, Flohr A, Stahl M (2004) Drug Discov Today: Technologies 1:217–224 DOI 10.1016/j.ddtec.2004.10.009

    Article  Google Scholar 

  2. Brown RD, Martin YC (1996) J Chem Inf Comp Sci 36:572–584 DOI 10.1021/ci9501047

    Article  CAS  Google Scholar 

  3. Brown RD, Martin YC (1997) J Chem Inf Comp Sci 37:1–9 DOI 10.1021/ci960373c

    Article  CAS  Google Scholar 

  4. Zhao H (2007) Drug Discov Today 12:149–155 DOI 10.1016/j.drudis.2006.12.003

    Article  CAS  Google Scholar 

  5. Clark T (2006) Proceedings of the International Beilstein Workhop. Bolzano, Italy

    Google Scholar 

  6. Stone AJ (1996) The theory of intermolecular interactions. Clarendon, Oxford

    Google Scholar 

  7. Maass P, Schulz-Gasch T, Stahl M, Rarey M (2007) J Chem Inf Model 47:390–399 DOI 10.1021/ci060094h

    Article  CAS  Google Scholar 

  8. Barker EJ, Buttar D, Cosgrove DA, Gardiner EJ, Kitts P, Willett P, Gillet VJ (2006) J Chem Inf Model 46:503–511 DOI 10.1021/ci050347r

    Article  CAS  Google Scholar 

  9. Schneider G, Neidhart W, Giller T, Schmid G (1999) Angw Chem Int Ed 38:2894–2896 DOI 10.1002/(SICI)1521–3773(19991004)38:19

    Article  CAS  Google Scholar 

  10. Low CMR, Buck IM, Cooke T, Cushnir JR, Kalindjian SB, Kotecha A, Pether MJ, Shankley NP, Vinter JG, Wright L (2005) J Med Chem 48:6790–6802 DOI 10.1021/jm049069y

    Article  CAS  Google Scholar 

  11. Ahlström MM, Ridderström M, Luthmann K, Zamora I (2005) J Chem Inf Model 45:1313–1323 DOI 10.1021/ci049626p

    Article  Google Scholar 

  12. Bergmann R, Linusson A, Zamora I (2007) J Med Chem 50:2708–2717 DOI 10.1021/jm061259g

    Article  CAS  Google Scholar 

  13. Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440–1443

    Article  CAS  Google Scholar 

  14. Ehresmann B, Horn AHC, Clark T (2003) J Mol Model 9:342–347 DOI 10.1007/s00894–003–0153-x

    Article  CAS  Google Scholar 

  15. Ehresmann B, de Groot MJ, Alex A, Clark T (2004) J Chem Inf Comp Sci 44:658–668 DOI 10.1021/ci034215e

    Article  CAS  Google Scholar 

  16. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311 DOI 10.1007/s00894–006–0154–7

    Article  CAS  Google Scholar 

  17. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296 DOI 10.1007/s00894–006–0130–2

    Article  CAS  Google Scholar 

  18. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038 DOI 10.1007/s00894–007–0225–4

    Article  CAS  Google Scholar 

  19. Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292 DOI 10.1002/qua.21352

    Article  CAS  Google Scholar 

  20. Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052 DOI 10.1002/qua.21419

    Article  CAS  Google Scholar 

  21. Politzer P, Murray JS, Concha MC (2002) Int J Quant Chem 88:19–27 DOI 10.1002/qua.10109

    Article  CAS  Google Scholar 

  22. Ping J, Murray JS, Politzer P (2004) Int J Quant Chem 96:394–401 DOI 10.1002/qua.10717

    Article  Google Scholar 

  23. Dobson CM (2004) Nature 432:824–828 DOI 10.1038/nature03192

    Article  CAS  Google Scholar 

  24. Mauser H, Stahl M (2007) J Chem Inf Model 47:318–324 DOI 10.1021/ci6003652

    Article  CAS  Google Scholar 

  25. Wood MR, Schirripa KM, Kim JJ, Wan B-L, Murphy KL, Ransom RW, Chang RSL, Tang C, Prueksaritanont T, Detwiler TJ, Hettrick LA, Landis ER, Leonard YM, Krueger JA, Lewis SD, Pettibone DJ, Freidinger RM, Boc MG (2006) J Med Chem 49:1231–1234 DOI 10.1021/jm0511280

    Article  CAS  Google Scholar 

  26. Zhao H (2007) Drug Discov Today 12:149–155 DOI 10.1016/j.drudis.2006.12.003

    Article  CAS  Google Scholar 

  27. Clark T (2006) ParaSurf, Cepos Insilico, Erlangen, Germany (http://www.ceposinsilico.com)

  28. Daylight Toolkit 4.7, Daylight Chemical Information Systems, Aliso Viejo, CA (http://www.daylight.com)

  29. Gasteiger J, Rudolph C, Sadowski J (1990) Tetrahedron Comp Method 3:537–547

    Article  CAS  Google Scholar 

  30. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909 DOI 10.1021/ja00299a024

    Article  CAS  Google Scholar 

  31. VAMP (Version 9.0), Accelrys, San Diego, CA (http://www.accelrys.com)

  32. Ritchie DW, Kemp GJL (1999) J Comput Chem 20:383–395 DOI 10.1002/(SICI)1096–987X(199903)20:4

    Article  CAS  Google Scholar 

  33. Cai W, Zhang M, Maigret B (1998) J Comput Chem 19:1805–1815 DOI 10.1002/(SICI)1096–987X(199812)19:16

    Article  CAS  Google Scholar 

  34. van Vrie JH (1997) J Chem Inf Comp Sci 37:38–41 DOI 10.1021/ci960464

    Article  Google Scholar 

  35. van Vrie JH, Nugent RA (1998) SAR and QSAR in Environ Res 9:1–21

    Google Scholar 

  36. Erikson J, Neidhart DJ, van Vrie JH, Kempf DJ, Wang XC, Norbeck DW, Plattner JJ, Rittenhouse JW, Turon M, Wideburg N et al (1990) Science 249:527–533 DOI 10.1126/science.2200122

    Article  Google Scholar 

  37. OEChem Version 1.3.3, OpenEye Scientific, Santa Fe, NM (http://www.eyesopen.com)

  38. MOE, Chemical Computing Group, Montréal, Canada (http://www.chemcomp.com)

  39. DeLano WL (2002) PyMOL Molecular Graphics System, DeLano Scientific, Palo Alto, CA (http://www.pymol.org)

  40. Omega Version 2.0, OpenEye Scientific, Santa Fe, NM (http://www.eyesopen.com)

  41. Kirchmaier J, Wolber G, Laggner C, Langer T (2006) J Chem Inf Mod 46:1848–1861 DOI 10.1021/ci060084g

    Article  Google Scholar 

  42. Politzer P, Murray J, Concha M (2007) J Mol Model 13:643–650 DOI 10.1007/s00894-007-0176-9

    Article  CAS  Google Scholar 

  43. Rauhut G, Clark T (1993) J Comput Chem 14:503–509 DOI 10.1002/jcc.540140502

    Article  CAS  Google Scholar 

  44. Hassel O (1970) Science 170:497–502 DOI 10.1126/science.170.3957.497

    Article  CAS  Google Scholar 

  45. Auffinger P, Hays FA, Westhof E, Hing Ho P (2004) Proc Natl Acad Sci USA 101:16789–16794 DOI 10.1073/pnas.0407607101

    Article  CAS  Google Scholar 

  46. Frisch MJ et al (2004) Gaussian 03, Revision C.02. Gaussian, Wallingford, CT

    Google Scholar 

  47. Becke AD (1993) J Chem Phys 98:5648–5652 DOI 10.1063/1.464913

    Article  CAS  Google Scholar 

  48. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  49. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627 DOI 10.1021/j100096a001

    Article  CAS  Google Scholar 

  50. McLean D, Chandler GS (1980) J Chem Phys 72:5639–5648 DOI 10.1063/1.438980

    Article  CAS  Google Scholar 

  51. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654 DOI 10.1063/1.438955

    Article  CAS  Google Scholar 

  52. Binning RC Jr, Curtiss LA (1990) J Comp Chem 11:1206–1216 DOI 10.1002/jcc.540111013

    Article  CAS  Google Scholar 

  53. Curtiss LA, McGrath MP, Blaudeau J-P, Davis NE, Binning RC Jr, Radom L (1995) J Chem Phys 103:6104–6113 DOI 10.1063/1.470438

    Article  CAS  Google Scholar 

  54. McGrath MP, Radom L (1991) J Chem Phys 94:511–516 DOI 10.1063/1.460367

    Article  CAS  Google Scholar 

  55. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comp Chem 4:294 DOI 10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  56. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269 DOI 10.1063/1.447079

    Article  CAS  Google Scholar 

  57. Laaksonen L (1992) J Mol Graph 10:33–34

    Article  CAS  Google Scholar 

  58. Bergman DL, Laaksonen L, Laaksonen A (1997) J Mol Graph Model 15:301–306 DOI 10.1016/S1093–3263(98)00003–5

    Article  CAS  Google Scholar 

  59. gOpenMol, CSC, Espoo, Finland (http://www.csc.fi/gopenmol)

  60. Rocs Version 2.3.1, OpenEye Scientific, Santa Fe NM (http://www.eyesopen.com)

  61. Rarey M, Zimmermann M, Hindle S, Feature Trees version 1.5.2 (Biosolve It, http://www.biosolveit.de)

Download references

Acknowledgments

We thank David Whitley and Brian Hudson, Center for Molecular Design, University of Portsmouth, UK for helpful discussions and for providing the results of the spherical harmonics calculation. This work would not have been possible without support of our colleagues in the Cheminformatics & Molecular Modeling group at Roche, Basel. In particular we thank Wolfgang Guba, Daniel Stoffler, Olivier Roche and Martin Stahl. We thank Wolfram Altenhofen and Guido Kirsten, Chemical Computing Group, for providing an interface for visualizing the local property surfaces in MOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Mauser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobi, AJ., Mauser, H. & Clark, T. ParaFrag—an approach for surface-based similarity comparison of molecular fragments. J Mol Model 14, 547–558 (2008). https://doi.org/10.1007/s00894-008-0302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0302-3

Keywords

Navigation