Journal of Molecular Modeling

, Volume 14, Issue 7, pp 547–558 | Cite as

ParaFrag—an approach for surface-based similarity comparison of molecular fragments

  • Arjen-Joachim Jakobi
  • Harald MauserEmail author
  • Timothy Clark
Original Paper


A frequent task in computer-aided drug design is to identify novel chemotypes similar in activity but structurally different to a given reference structure. Here we report the development of a novel method for atom-independent similarity comparison of molecular fragments (substructures of drug-like molecules). The fragments are characterized by their local surface properties coded in the form of 3D pharmacophores. As surface properties, we used the electrostatic potential (MEP), the local ionization energy (IEL), local electron affinity (EAL) and local polarizability (POL) calculated on isodensity surfaces. A molecular fragment can then be represented by a minimal set of extremes for each surface property. We defined a tolerance sphere for each of these extremes, thus allowing us to assess the similarity of fragments in an analogous manner to classical pharmacophore comparison. As a first application of this method we focused on comparing rigid fragments suitable for scaffold hopping. A retrospective analysis of successful scaffold hopping reported for Factor Xa inhibitors [Wood MR et al (2006) J Med Chem 49:1231] showed that our method performs well where atom-based similarity metrics fail.


Encoding surface hotspots as a ParaFrag pharmacophore


Fragment Molecular surface Similarity searching Scaffold hopping Pharmacophore matching 



We thank David Whitley and Brian Hudson, Center for Molecular Design, University of Portsmouth, UK for helpful discussions and for providing the results of the spherical harmonics calculation. This work would not have been possible without support of our colleagues in the Cheminformatics & Molecular Modeling group at Roche, Basel. In particular we thank Wolfgang Guba, Daniel Stoffler, Olivier Roche and Martin Stahl. We thank Wolfram Altenhofen and Guido Kirsten, Chemical Computing Group, for providing an interface for visualizing the local property surfaces in MOE.


  1. 1.
    Böhm HJ, Flohr A, Stahl M (2004) Drug Discov Today: Technologies 1:217–224 DOI  10.1016/j.ddtec.2004.10.009 CrossRefGoogle Scholar
  2. 2.
    Brown RD, Martin YC (1996) J Chem Inf Comp Sci 36:572–584 DOI  10.1021/ci9501047 CrossRefGoogle Scholar
  3. 3.
    Brown RD, Martin YC (1997) J Chem Inf Comp Sci 37:1–9 DOI  10.1021/ci960373c CrossRefGoogle Scholar
  4. 4.
    Zhao H (2007) Drug Discov Today 12:149–155 DOI  10.1016/j.drudis.2006.12.003 CrossRefGoogle Scholar
  5. 5.
    Clark T (2006) Proceedings of the International Beilstein Workhop. Bolzano, ItalyGoogle Scholar
  6. 6.
    Stone AJ (1996) The theory of intermolecular interactions. Clarendon, OxfordGoogle Scholar
  7. 7.
    Maass P, Schulz-Gasch T, Stahl M, Rarey M (2007) J Chem Inf Model 47:390–399 DOI  10.1021/ci060094h CrossRefGoogle Scholar
  8. 8.
    Barker EJ, Buttar D, Cosgrove DA, Gardiner EJ, Kitts P, Willett P, Gillet VJ (2006) J Chem Inf Model 46:503–511 DOI  10.1021/ci050347r CrossRefGoogle Scholar
  9. 9.
    Schneider G, Neidhart W, Giller T, Schmid G (1999) Angw Chem Int Ed 38:2894–2896 DOI  10.1002/(SICI)1521–3773(19991004)38:19 CrossRefGoogle Scholar
  10. 10.
    Low CMR, Buck IM, Cooke T, Cushnir JR, Kalindjian SB, Kotecha A, Pether MJ, Shankley NP, Vinter JG, Wright L (2005) J Med Chem 48:6790–6802 DOI  10.1021/jm049069y CrossRefGoogle Scholar
  11. 11.
    Ahlström MM, Ridderström M, Luthmann K, Zamora I (2005) J Chem Inf Model 45:1313–1323 DOI  10.1021/ci049626p CrossRefGoogle Scholar
  12. 12.
    Bergmann R, Linusson A, Zamora I (2007) J Med Chem 50:2708–2717 DOI  10.1021/jm061259g CrossRefGoogle Scholar
  13. 13.
    Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440–1443CrossRefGoogle Scholar
  14. 14.
    Ehresmann B, Horn AHC, Clark T (2003) J Mol Model 9:342–347 DOI  10.1007/s00894–003–0153-x CrossRefGoogle Scholar
  15. 15.
    Ehresmann B, de Groot MJ, Alex A, Clark T (2004) J Chem Inf Comp Sci 44:658–668 DOI  10.1021/ci034215e CrossRefGoogle Scholar
  16. 16.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311 DOI  10.1007/s00894–006–0154–7 CrossRefGoogle Scholar
  17. 17.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296 DOI  10.1007/s00894–006–0130–2 CrossRefGoogle Scholar
  18. 18.
    Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038 DOI  10.1007/s00894–007–0225–4 CrossRefGoogle Scholar
  19. 19.
    Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292 DOI  10.1002/qua.21352 CrossRefGoogle Scholar
  20. 20.
    Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052 DOI  10.1002/qua.21419 CrossRefGoogle Scholar
  21. 21.
    Politzer P, Murray JS, Concha MC (2002) Int J Quant Chem 88:19–27 DOI  10.1002/qua.10109 CrossRefGoogle Scholar
  22. 22.
    Ping J, Murray JS, Politzer P (2004) Int J Quant Chem 96:394–401 DOI  10.1002/qua.10717 CrossRefGoogle Scholar
  23. 23.
    Dobson CM (2004) Nature 432:824–828 DOI  10.1038/nature03192 CrossRefGoogle Scholar
  24. 24.
    Mauser H, Stahl M (2007) J Chem Inf Model 47:318–324 DOI  10.1021/ci6003652 CrossRefGoogle Scholar
  25. 25.
    Wood MR, Schirripa KM, Kim JJ, Wan B-L, Murphy KL, Ransom RW, Chang RSL, Tang C, Prueksaritanont T, Detwiler TJ, Hettrick LA, Landis ER, Leonard YM, Krueger JA, Lewis SD, Pettibone DJ, Freidinger RM, Boc MG (2006) J Med Chem 49:1231–1234 DOI  10.1021/jm0511280 CrossRefGoogle Scholar
  26. 26.
    Zhao H (2007) Drug Discov Today 12:149–155 DOI  10.1016/j.drudis.2006.12.003 CrossRefGoogle Scholar
  27. 27.
    Clark T (2006) ParaSurf, Cepos Insilico, Erlangen, Germany (
  28. 28.
    Daylight Toolkit 4.7, Daylight Chemical Information Systems, Aliso Viejo, CA (
  29. 29.
    Gasteiger J, Rudolph C, Sadowski J (1990) Tetrahedron Comp Method 3:537–547CrossRefGoogle Scholar
  30. 30.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909 DOI  10.1021/ja00299a024 CrossRefGoogle Scholar
  31. 31.
    VAMP (Version 9.0), Accelrys, San Diego, CA (
  32. 32.
    Ritchie DW, Kemp GJL (1999) J Comput Chem 20:383–395 DOI  10.1002/(SICI)1096–987X(199903)20:4 CrossRefGoogle Scholar
  33. 33.
    Cai W, Zhang M, Maigret B (1998) J Comput Chem 19:1805–1815 DOI  10.1002/(SICI)1096–987X(199812)19:16 CrossRefGoogle Scholar
  34. 34.
    van Vrie JH (1997) J Chem Inf Comp Sci 37:38–41 DOI  10.1021/ci960464 CrossRefGoogle Scholar
  35. 35.
    van Vrie JH, Nugent RA (1998) SAR and QSAR in Environ Res 9:1–21Google Scholar
  36. 36.
    Erikson J, Neidhart DJ, van Vrie JH, Kempf DJ, Wang XC, Norbeck DW, Plattner JJ, Rittenhouse JW, Turon M, Wideburg N et al (1990) Science 249:527–533 DOI  10.1126/science.2200122 CrossRefGoogle Scholar
  37. 37.
    OEChem Version 1.3.3, OpenEye Scientific, Santa Fe, NM (
  38. 38.
    MOE, Chemical Computing Group, Montréal, Canada (
  39. 39.
    DeLano WL (2002) PyMOL Molecular Graphics System, DeLano Scientific, Palo Alto, CA (
  40. 40.
    Omega Version 2.0, OpenEye Scientific, Santa Fe, NM (
  41. 41.
    Kirchmaier J, Wolber G, Laggner C, Langer T (2006) J Chem Inf Mod 46:1848–1861 DOI  10.1021/ci060084g CrossRefGoogle Scholar
  42. 42.
    Politzer P, Murray J, Concha M (2007) J Mol Model 13:643–650 DOI  10.1007/s00894-007-0176-9 CrossRefGoogle Scholar
  43. 43.
    Rauhut G, Clark T (1993) J Comput Chem 14:503–509 DOI  10.1002/jcc.540140502 CrossRefGoogle Scholar
  44. 44.
    Hassel O (1970) Science 170:497–502 DOI  10.1126/science.170.3957.497 CrossRefGoogle Scholar
  45. 45.
    Auffinger P, Hays FA, Westhof E, Hing Ho P (2004) Proc Natl Acad Sci USA 101:16789–16794 DOI  10.1073/pnas.0407607101 CrossRefGoogle Scholar
  46. 46.
    Frisch MJ et al (2004) Gaussian 03, Revision C.02. Gaussian, Wallingford, CTGoogle Scholar
  47. 47.
    Becke AD (1993) J Chem Phys 98:5648–5652 DOI  10.1063/1.464913 CrossRefGoogle Scholar
  48. 48.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  49. 49.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627 DOI  10.1021/j100096a001 CrossRefGoogle Scholar
  50. 50.
    McLean D, Chandler GS (1980) J Chem Phys 72:5639–5648 DOI  10.1063/1.438980 CrossRefGoogle Scholar
  51. 51.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654 DOI  10.1063/1.438955 CrossRefGoogle Scholar
  52. 52.
    Binning RC Jr, Curtiss LA (1990) J Comp Chem 11:1206–1216 DOI  10.1002/jcc.540111013 CrossRefGoogle Scholar
  53. 53.
    Curtiss LA, McGrath MP, Blaudeau J-P, Davis NE, Binning RC Jr, Radom L (1995) J Chem Phys 103:6104–6113 DOI  10.1063/1.470438 CrossRefGoogle Scholar
  54. 54.
    McGrath MP, Radom L (1991) J Chem Phys 94:511–516 DOI  10.1063/1.460367 CrossRefGoogle Scholar
  55. 55.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comp Chem 4:294 DOI  10.1002/jcc.540040303 CrossRefGoogle Scholar
  56. 56.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269 DOI  10.1063/1.447079 CrossRefGoogle Scholar
  57. 57.
    Laaksonen L (1992) J Mol Graph 10:33–34CrossRefGoogle Scholar
  58. 58.
    Bergman DL, Laaksonen L, Laaksonen A (1997) J Mol Graph Model 15:301–306 DOI  10.1016/S1093–3263(98)00003–5 CrossRefGoogle Scholar
  59. 59.
    gOpenMol, CSC, Espoo, Finland (
  60. 60.
    Rocs Version 2.3.1, OpenEye Scientific, Santa Fe NM (
  61. 61.
    Rarey M, Zimmermann M, Hindle S, Feature Trees version 1.5.2 (Biosolve It,

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Arjen-Joachim Jakobi
    • 1
    • 2
  • Harald Mauser
    • 1
    Email author
  • Timothy Clark
    • 2
  1. 1.Discovery ChemistryF. Hoffmann–La Roche AGBaselSwitzerland
  2. 2.Computer Chemie Centrum and Interdisciplary Center for Molecular MaterialsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations