Journal of Molecular Modeling

, Volume 14, Issue 8, pp 727–733 | Cite as

Ab initio multireference study of Hetero-Diels-Alder reaction of buta-1,3-diene with alkyl glyoxylates

  • Borys Szefczyk
  • Tadeusz Andruniów
  • W. Andrzej Sokalski
Original Paper


Hetero-Diels-Alder (HDA) reaction of methyl glyoxylate with buta-1,3-diene has been investigated using multireference methods (complete active space SCF and multi-reference perturbation theory) and compared with several single-reference methods (including DFT) often used in calculations of catalysed [4+2] cycloadditions. Concerted and stepwise mechanisms, found in the literature, are compared. It is shown, that the stepwise mechanism may be a result of choosing unbalanced active space. Such choice leads to very close singlet and triplet states in the intermediate geometry - an artificial effect, that disappears if properly balanced active space is used (here, we use active space of 12 orbitals and 12 electrons). Conclusions concerning the mechanism and usefulness of the applied methodology are drawn, which might be important for theoretical investigation of stereoselectivity and specificity of catalysts for the HDA reaction.


Hetero-Diels-Alder reaction of alkyl glyoxylates with buta-1,3-diene, investigated using multi- and single-reference ab initio methods


Complete active space - self consistent field method [4+2] cycloaddition Density functional theory Hetero-Diels-Alder reaction mechanism 



Authors would like to acknowledge Wroclaw University of Technology, where the work was performed. This research is supported by the Marie Curie European Reintegration Grant (MERG-CT-2004–516486). B. Szefczyk would like to thank the Foundation for Polish Science for a fellowship. Calculations have been performed at Wroclaw (WCSS), Poznań (PSNC) and Warsaw (ICM) Supercomputer Centres. Authors are grateful to Prof. Janusz Jurczak and Dr Piotr Kwiatkowski from the Institute of Organic Chemistry, Polish Academy of Science for suggesting these interesting topics and fruitful discussions.

Supplementary material

894_2008_289_MOESM1_ESM.pdf (102 kb)
ESM 1 (PDF 102 kb)


  1. 1.
    Gao X, Hall DG (2005) J Am Chem Soc 127:1628–1629CrossRefGoogle Scholar
  2. 2.
    Hughes RA, Thompson SP, Alcaraz L, Moody CJ (2005) J Am Chem Soc 127:15644–15651CrossRefGoogle Scholar
  3. 3.
    Deutsch HM, Collard DM, Zhang L, Burnham KS, Deshpande AK, Holtzman SG, Schweri MM (1999) J Med Chem 42:882–895CrossRefGoogle Scholar
  4. 4.
    Patel RN (2001) Adv Synth Cat 343:527–546CrossRefGoogle Scholar
  5. 5.
    Cordato DJ, Mather LE, Herkes GK (2003) J Clin Neurosci 10:649–654CrossRefGoogle Scholar
  6. 6.
    Brunel JM (2005) Chem Rev 105:857–898CrossRefGoogle Scholar
  7. 7.
    Berthod M, Mignani G, Woodward G, Lemaire M (2005) Chem Rev 105:1801–1836CrossRefGoogle Scholar
  8. 8.
    Schaus SE, Branalt J, Jacobsen EN (1998) J Org Chem 63:403–405CrossRefGoogle Scholar
  9. 9.
    Kwiatkowski P, Asztemborska M, Jurczak J (2004) Tetrahedron: Asymmetry 15:3189–3194CrossRefGoogle Scholar
  10. 10.
    Kwiatkowski P, Chaładaj W, Malinowska M, Asztemborska M, Jurczak J (2005) Tetrahedron: Asymmetry 16:2959–2964CrossRefGoogle Scholar
  11. 11.
    Brandt P, Norrby PO, Daly AM, Gilheany DG (2002) Chem Eur J 8:4299–4307CrossRefGoogle Scholar
  12. 12.
    Abashkin YG, Burt SK (2004) Org Lett 6:59–62CrossRefGoogle Scholar
  13. 13.
    Khavrutskii IV, Musaev DG, Morokuma K (2004) Proc Nat Acad Sci USA 101:5743–5748CrossRefGoogle Scholar
  14. 14.
    Luinstra GA, Haas GR, Molnar F, Bernhart V, Eberhardt R, Rieger B (2005) Chem Eur J 11:6298–6314CrossRefGoogle Scholar
  15. 15.
    Lischka H, Ventura E, Dallos M (2004) ChemPhysChem 5:1365–1371CrossRefGoogle Scholar
  16. 16.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  17. 17.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  18. 18.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  19. 19.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  20. 20.
    Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157–173CrossRefGoogle Scholar
  21. 21.
    Nakano H (1993) J Chem Phys 99:7983–7992CrossRefGoogle Scholar
  22. 22.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.04. Gaussian, Inc., Pittsburgh PAGoogle Scholar
  23. 23.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  24. 24.
    Sakai S (2000) J Phys Chem A 104:922–927CrossRefGoogle Scholar
  25. 25.
    Sakai S (2003) J Mol Struct (THEOCHEM) 630:177–185CrossRefGoogle Scholar
  26. 26.
    Kaplan IG (2007) J Mol Struct 838:39–43CrossRefGoogle Scholar
  27. 27.
    Kaplan IG (2007) Int J Quant Chem 107:2595–2603CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Borys Szefczyk
    • 1
  • Tadeusz Andruniów
    • 1
  • W. Andrzej Sokalski
    • 1
  1. 1.Institute of Physical & Theoretical ChemistryWrocław University of TechnologyWrocławPoland

Personalised recommendations