Journal of Molecular Modeling

, Volume 14, Issue 8, pp 689–697 | Cite as

Why are dimethyl sulfoxide and dimethyl sulfone such good solvents?

  • Timothy Clark
  • Jane S. Murray
  • Pat Lane
  • Peter Politzer
Original Paper

Abstract

We have carried out B3PW91 and MP2-FC computational studies of dimethyl sulfoxide, (CH3)2SO, and dimethyl sulfone, (CH3)2SO2. The objective was to establish quantitatively the basis for their high polarities and boiling points, and their strong solvent powers for a variety of solutes. Natural bond order analyses show that the sulfur–oxygen linkages are not double bonds, as widely believed, but rather are coordinate covalent single S+→O bonds. The calculated electrostatic potentials on the molecular surfaces reveal several strongly positive and negative sites (the former including σ-holes on the sulfurs) through which a variety of simultaneous intermolecular electrostatic interactions can occur. A series of examples is given. In terms of these features the striking properties of dimethyl sulfoxide and dimethyl sulfone, their large dipole moments and dielectric constants, their high boiling points and why they are such good solvents, can readily be understood.

Figure

Dimers of dimethyl sulfoxide (DMSO; left) and dimethyl sulfone (DMSO2; right) showing O S—O -hole bonding and C H—O hydrogen bonding. Sulfur atoms are yellow, oxygens are red, carbons are gray and hydrogens are white

Keywords

Dimethyl sulfoxide Dimethyl sulfone Electrostatic potentials σ-Hole bonding Noncovalent interactions 

References

  1. 1.
    Lide DR (ed) (2006) Handbook of Chemistry and Physics, 87th edn. CRC, Boca Raton, FLGoogle Scholar
  2. 2.
    Gaylord Chemical Corp., Research and Technology Center, Bogalusa, LAGoogle Scholar
  3. 3.
    Johnson III RD (ed) (2005) NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database No. 101, Release 12, http://srdata.nist.gov/cccbdb
  4. 4.
    Windholz M (ed) (1983) The Merck Index, 10th edn, Merck, Rahway, NJGoogle Scholar
  5. 5.
    Stewart RF (1979) Chem Phys Lett 65:335–342CrossRefGoogle Scholar
  6. 6.
    Politzer P, Truhlar DG (eds) (1981) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Plenum, New YorkGoogle Scholar
  7. 7.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  8. 8.
    Hagelin H, Murray JS, Brinck T, Berthelot M, Politzer P (1995) Can J Chem 73:483–488CrossRefGoogle Scholar
  9. 9.
    Murray JS, Politzer P (1998) J Mol Struct (Theochem) 425:107–114CrossRefGoogle Scholar
  10. 10.
    Politzer P, Murray JS (1999) Trends Chem Phys 7:157–165Google Scholar
  11. 11.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  12. 12.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  13. 13.
    Arndt F, Eistert B (1941) Ber Dtsch Chem Ges 74:451–459Google Scholar
  14. 14.
    Phillips GM, Hunter JS, Sutton LE (1945) J Chem Soc 146–162Google Scholar
  15. 15.
    Moffitt W (1950) Proc R Soc A 200:409–428CrossRefGoogle Scholar
  16. 16.
    Cruickshank DW (1961) J Chem Soc 5486–5504Google Scholar
  17. 17.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  18. 18.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311CrossRefGoogle Scholar
  19. 19.
    Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292CrossRefGoogle Scholar
  20. 20.
    Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038CrossRefGoogle Scholar
  21. 21.
    Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650CrossRefGoogle Scholar
  22. 22.
    Bernard-Houplain MC, Sandorfy C (1973) Can J Chem 51(1075):3640–3646CrossRefGoogle Scholar
  23. 23.
    Di Paolo T, Sandorfy C (1974) Can J Chem 52:3612–3622CrossRefGoogle Scholar
  24. 24.
    Rosenfield Jr RE, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4860–4862CrossRefGoogle Scholar
  25. 25.
    Murray-Rust P, Motherwell WDS (1979) J Am Chem Soc 101:4374–4376CrossRefGoogle Scholar
  26. 26.
    Guru Row TN, Parthasarathy R (1981) J Am Chem Soc 103:477–479CrossRefGoogle Scholar
  27. 27.
    Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308–4314CrossRefGoogle Scholar
  28. 28.
    Iwaoka M, Komatsu H, Katsuda T, Tomoda S (2002) J Am Chem Soc 124:1902–1909 and papers citedCrossRefGoogle Scholar
  29. 29.
    Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116CrossRefGoogle Scholar
  30. 30.
    Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) J Phys Chem A 104:1617–1620CrossRefGoogle Scholar
  31. 31.
    Romaniello P, Lelj F (2002) J Phys Chem A 106:9114–9119CrossRefGoogle Scholar
  32. 32.
    Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH (2005) J Am Chem Soc 127:3184–3190CrossRefGoogle Scholar
  33. 33.
    Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) J Am Chem Soc 128:2666–2674CrossRefGoogle Scholar
  34. 34.
    Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem Int Ed 39:1782–1786CrossRefGoogle Scholar
  35. 35.
    Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052CrossRefGoogle Scholar
  36. 36.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar
  37. 37.
    Onthong U, Megyes T, Bakó I, Radnai T, Grósz T, Hermansson K, Probst M (2004) Phys Chem Chem Phys 6:2136–2144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Timothy Clark
    • 1
    • 2
  • Jane S. Murray
    • 3
    • 4
  • Pat Lane
    • 3
  • Peter Politzer
    • 3
    • 4
  1. 1.Computer-Chemie-CentrumFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Interdiscplinary Center for Molecular MaterialsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Department of ChemistryUniversity of New OrleansNew OrleansUSA
  4. 4.Department of ChemistryCleveland State UniversityClevelandUSA

Personalised recommendations