Advertisement

Journal of Molecular Modeling

, Volume 14, Issue 3, pp 225–235 | Cite as

Molecular dynamics simulation of hydrated Nafion with a reactive force field for water

  • Detlef W. M. HofmannEmail author
  • Liudmila Kuleshova
  • Bruno D’Aguanno
Original Paper

Abstract

We apply a newly parameterized central force field to highlight the problem of proton transport in fuel cell membranes and show that central force fields are potential candidates to describe chemical reactions on a classical level. After a short sketch of the parameterization of the force field, we validate the obtained force field for several properties of water. The experimental and simulated radial distribution functions are reproduced very accurately as a consequence of the applied parameterization procedure. Further properties, geometry, coordination, diffusion coefficient and density, are simulated adequately for our purposes. Afterwards we use the new force field for the molecular dynamics simulation of a swollen polyelectrolyte membrane similar to the widespread Nafion 117. We investigate the equilibrated structures, proton transfer, lifetimes of hydronium ions, the diffusion coefficients, and the conductivity in dependence of water content. In a short movie we demonstrate the ability of the obtained force field to describe the bond breaking/formation, and conclude that this force field can be considered as a kind of a reactive force field. The investigations of the lifetimes of hydronium ions give us the information about the kinetics of the proton transfer in a membrane with low water content. We found the evidence for the second order reaction. Finally, we demonstrate that the model is simple enough to handle the large systems sufficient to calculate the conductivity from molecular dynamics simulations. The detailed analysis of the conductivity reveals the importance of the collective moving of hydronium ions in membrane, which might give an interesting encouragement for further development of membranes. Figure: The structure of water in one pore of the highly hydrated Nafion membranes.

Figure

The structure of water in one of pore of the highly hydrated Nafion membrane

Keywords

Molecular dynamics Nafion Radial distribution function Reactive force field Water 

Notes

Acknowledgments

The authors would like to thank for financial support the Sardinia Region and the Italian Ministry of Research (MIUR), NUME project (http://www.progetto-nume.it/). The authors are also indebted to Lorenzo Pisani for many useful discussions.

Supplementary material

Video 1

Supplementary material (the movie of molecular dynamics in hydrated Nafion membrane including one proton transfer) is available (AVI 13.4 mb)

References

  1. 1.
    Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Chem Rev 104:4637–4678CrossRefGoogle Scholar
  2. 2.
    Tuckerman M, Laasonen K, Sprik M, Parrinello MJ (1995) Chem Phys 103:150–161CrossRefGoogle Scholar
  3. 3.
    Schmitt U, Voth G (1999) J Chem Phys 111:9361–9381CrossRefGoogle Scholar
  4. 4.
    Walbran S, Kornyshev A (2001) J Chem Phys 114:10039–10048CrossRefGoogle Scholar
  5. 5.
    Day T, Soudackov A, Cuma M, Schmitt U, Voth G (2002) J Chem Phys 117:5839–5849CrossRefGoogle Scholar
  6. 6.
    Spohr E, Commer P, Kornyshev A (2002) J Phys Chem B106:10560–10569CrossRefGoogle Scholar
  7. 7.
    Petersen M, Wang F, Blake N, Metiu H, Voth G (2005) J Phys Chem B 109:3727–3730CrossRefGoogle Scholar
  8. 8.
    van Duin A, Dasgupta S, Lorant F, Goddard III W (2001) J Phys Chem A 105:9396–9409CrossRefGoogle Scholar
  9. 9.
    Yin K, Xia Q, Xu D, Chen C (2006) Comput Chem Eng 30:1346–1353CrossRefGoogle Scholar
  10. 10.
    Lyubartsev A, Laaksonen A (2000) Chem Phys Lett 325:15–21CrossRefGoogle Scholar
  11. 11.
    Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund LA, Hirsch TK, Ojamae L, Glatzel P et al. (2004) Science 304:995CrossRefGoogle Scholar
  12. 12.
    Soper AK (2000) Chem Phys 258:121–137CrossRefGoogle Scholar
  13. 13.
    Hofmann D, Apostolakis J (2003) J Mol Struc:Theo Chem 647:17–39CrossRefGoogle Scholar
  14. 14.
    Lemberg H, Stillinger FH (1975) J Chem Phys 62:1677–1690CrossRefGoogle Scholar
  15. 15.
    Arthur J, Haymet ADJ (1998) Fluid Phase Equilibria 150:91–96CrossRefGoogle Scholar
  16. 16.
    Bresme F (2001) J Chem Phys 115:7564–7574CrossRefGoogle Scholar
  17. 17.
    Soper AK (1996) Chem Phys 202:295–306CrossRefGoogle Scholar
  18. 18.
    Lyubartsev A, Laaksonen A (1995) Phys Rev E52:3730–3737Google Scholar
  19. 19.
    Bernal J, Fowler RH (1933) J Chem Phys 1:515–548CrossRefGoogle Scholar
  20. 20.
    Elliot J, Hanna S, Elliot A, Cooley G (1999) Phys Chem Chem Phys 1:4855–4863CrossRefGoogle Scholar
  21. 21.
    Hofmann D, Kuleshova L, D’Aguano B (2007) Phys Chem Let 448:138–143CrossRefGoogle Scholar
  22. 22.
    Matsuoka O, Clementi E, Yoshimine M (1976) J Chem Phys 64:1351–1361CrossRefGoogle Scholar
  23. 23.
    Bursulaya B, Kim H (1998) J Chem Phys 109:4911–4919CrossRefGoogle Scholar
  24. 24.
    Guillot B (2002) J Mol Liquids 101:219–260CrossRefGoogle Scholar
  25. 25.
    Watanabe K, Klein M (1989) Chem Phys 131:157–167CrossRefGoogle Scholar
  26. 26.
    Berendsen H, Postma J, van Gunsteren W, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullmann, Dodrecht (eds) pp 331–342Google Scholar
  27. 27.
    Wallqvist A, Astrand P-O (1995) J Chem Phys 102:6559–6565CrossRefGoogle Scholar
  28. 28.
    Silvestrelli P, Parrinello M (1999) J Chem Phys 111:3572–3580CrossRefGoogle Scholar
  29. 29.
    Mayo SL, Olafson BD, Goddard III WA (1990) J Phys Chem 94:8897–8909CrossRefGoogle Scholar
  30. 30.
    Gebel G (2000) Polymer 41:5829–5838CrossRefGoogle Scholar
  31. 31.
    Wescott J, Qi Y, Subramanian L, Capehart T (2006) J Chem Phys 124:134702–134716CrossRefGoogle Scholar
  32. 32.
    Boero M, Ikeshoji T, Terakura K (2005) Chem Phys Chem 6: 1775–1779Google Scholar
  33. 33.
    Wedler G (1982) Lehrbuch der physikalischen Chemie. In Verlag Chemie; Chapter Die Bestimmung der Reaktionsordnung, pp 161–165Google Scholar
  34. 34.
    Moilanen DE, Piletic IR, Fayer MD (2006) J Phys Chem A110:9084–9088Google Scholar
  35. 35.
    Lowry TH, Richardson KS (1981) Mechanism and theory in organic chemistry. In: second ed.; Haper & Row, Publishers:; Chapter Kinetics and Mechanism, pp 174–188Google Scholar
  36. 36.
    Lonegran M, Shriver D, Ratner M (1995) Electrochimica Acta 40:2041–2048CrossRefGoogle Scholar
  37. 37.
    Zawodzinski T, Derouin C, Radzinski S, Sherman R, Smith V, Springer, T, Gottesfeld A (1993) J Electrochem Soc 140:1041–1047CrossRefGoogle Scholar
  38. 38.
    Spaeth M, Kreuer K, Maier J, Cramer C (1999) J Solid State Chem 148:169–177CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Detlef W. M. Hofmann
    • 1
    Email author
  • Liudmila Kuleshova
    • 1
  • Bruno D’Aguanno
    • 1
  1. 1.CRS4, Parco Scientifico e TecnologicoSardegna RecercaPulaItaly

Personalised recommendations