Journal of Molecular Modeling

, Volume 14, Issue 3, pp 171–181 | Cite as

DFT tests for group 8 transition metal carbonyl complexes

  • Pipsa Hirva
  • Matti Haukka
  • Minna Jakonen
  • M. Andreina Moreno
Original Paper

Abstract

The applicability of several popular density functionals in predicting the geometrical parameters and energetics of transition metal carbonyl complexes of iron, ruthenium and osmium has been studied. The methods tested include pure GGA functionals (BLYP, BP86, OPBE, HCTH, PBE, VSXC) and hybrid GGA functionals (B3PW91, B3LYP, PBE1PBE, MPW1K, B97-2, B1B95, PBE1KCIS). The effect of changing the metal basis set from Huzinaga’s all-electron basis to SDD scECP basis was also studied. The results show, that hybrid functionals are needed in order to describe the back-bonding ability of the carbonyl ligands as well as to deal with metal-metal bonds. The best general performance, when also the computational cost was considered, was obtained with hybrid functionals B3PW91 and PBE1PBE, which therefore provide an efficient tool for solving problems involving large or medium sized transition metal carbonyl compounds.

Figure

Optimized structure for one of the test molecules, the Ru3(CO)12 cluster, showing the staggered conformation of the carbonyl ligands

Keywords

Density functional calculations Iron Osmium Ruthenium Transition metals 

References

  1. 1.
    Zhao Y, Pu J, Lynch BJ, Truhlar DG (2004) Phys Chem Chem Phys 6:673–676CrossRefGoogle Scholar
  2. 2.
    Zhao Y, Gonzales-Garcia N, Truhlar DG (2005) J Phys Chem A 109:2012–2018CrossRefGoogle Scholar
  3. 3.
    Zhao Y, Truhlar DG (2005) J Chem Theory Comput 1:415–432CrossRefGoogle Scholar
  4. 4.
    Zheng J, Zhao Y, Truhlar DG (2007) J Chem Theory Comput 3:569–582CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Truhlar DG (2006) J Chem Phys 124:224105/1–6Google Scholar
  6. 6.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  7. 7.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101/1–18Google Scholar
  8. 8.
    Andersson S, Grüning M (2004) J Phys Chem A 108:7621–7636CrossRefGoogle Scholar
  9. 9.
    Izgorodina EI, Coote ML, Radom L (2005) J Phys Chem A 109:7558–7566CrossRefGoogle Scholar
  10. 10.
    Furche F, Perdew JP (2006) J Chem Phys 124:044103/1–27Google Scholar
  11. 11.
    Jonas V, Thiel W (1995) J Chem Phys 102:8474–8484CrossRefGoogle Scholar
  12. 12.
    Wilson PJ, Amos RD, Handy NC (2000) Phys Chem Chem Phys 2:187–194CrossRefGoogle Scholar
  13. 13.
    Saladino AC, Larsen SC (2005) Catal Today 105:122–133CrossRefGoogle Scholar
  14. 14.
    Petrie S, Stranger R (2004) Inorg Chem 43:2597–2610CrossRefGoogle Scholar
  15. 15.
    Range K, Riccardi D, Cui Q, Elstner M, York DM (2005) Phys Chem Chem Phys 7:3070–3079CrossRefGoogle Scholar
  16. 16.
    Schultz NE, Gherman BF, Cramer CJ, Truhlar DG (2006) J Phys Chem B 110:24030–24046CrossRefGoogle Scholar
  17. 17.
    Hyla-Kryspin I, Grimme S (2004) Organometallics 23:5581–5592CrossRefGoogle Scholar
  18. 18.
    van Wüllen C (1996) J Chem Phys 105:5485–5493CrossRefGoogle Scholar
  19. 19.
    Ziegler T, Tschinke V, Ursenbach C (1987) J Am Chem Soc 109:4825–4837CrossRefGoogle Scholar
  20. 20.
    Hu C-H, Chong DP (1996) Chem Phys Lett 262:733–736CrossRefGoogle Scholar
  21. 21.
    Uudsemaa M, Tamm T (2003) J Phys Chem A 107:9997–10003CrossRefGoogle Scholar
  22. 22.
    Ramirez-Solis A, Poteau R, Vela A, Daudey JP (2005) J Chem Phys 122:164306/1–10Google Scholar
  23. 23.
    Quintal MM, Karton A, Iron MA, Boese AD, Martin JML (2006) J Phys Chem A 110:709–716CrossRefGoogle Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann E, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzales C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford CTGoogle Scholar
  25. 25.
    Basis Sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 02/02/06, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a Multi-Program Laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. Contact Karen Schuchardt for further information. (2007)Google Scholar
  26. 26.
    Huzinaga S (ed.) (1984) Gaussian Basis Sets for Molecular Calculations. Physical Sciences Data 16, Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Boese R, Blaeser D (1990) Z Kristall 193:289–290CrossRefGoogle Scholar
  28. 28.
    Braga D, Grepioni F, Orpen AG (1993) Organometallics 12:1481–1483CrossRefGoogle Scholar
  29. 29.
    Huang J, Hedberg K, Davis HB, Pomeroy RK (1990) Inorg Chem 29:3923–3925CrossRefGoogle Scholar
  30. 30.
    Huang J, Hedberg K, Pomeroy RK (1988) Organometallics 7:2049–2053CrossRefGoogle Scholar
  31. 31.
    Farrugia LJ, Gillon AL, Braga D, Grepioni F (1999) Organometallics 18:5022–5033CrossRefGoogle Scholar
  32. 32.
    Braga D, Grepioni F, Tedesco E, Dyson PJ, Martin CM, Johnson BFG (1995) Transition Metal Chemistry 20:615–624CrossRefGoogle Scholar
  33. 33.
    Churchill MR, DeBoer BG (1977) Inorg Chem 16:878–884CrossRefGoogle Scholar
  34. 34.
    Haukka M, Hirva P, Luukkanen S, Kallinen M, Ahlgren M, Pakkanen TA (1999) Inorg Chem 38:3182–3189CrossRefGoogle Scholar
  35. 35.
    Homanen P, Haukka M, Pakkanen TA, Pursiainen J, Laitinen RH Organometallics 15:4081–4084Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Pipsa Hirva
    • 1
  • Matti Haukka
    • 1
  • Minna Jakonen
    • 1
  • M. Andreina Moreno
    • 1
  1. 1.Department of ChemistryUniversity of JoensuuJoensuuFinland

Personalised recommendations