Journal of Molecular Modeling

, Volume 14, Issue 2, pp 135–148 | Cite as

Multiple-step virtual screening using VSM-G: overview and validation of fast geometrical matching enrichment

  • Alexandre Beautrait
  • Vincent Leroux
  • Matthieu Chavent
  • Léo Ghemtio
  • Marie-Dominique Devignes
  • Malika Smaïl-Tabbone
  • Wensheng Cai
  • Xuegang Shao
  • Gilles Moreau
  • Peter Bladon
  • Jianhua Yao
  • Bernard Maigret
Original Paper


Numerous methods are available for use as part of a virtual screening strategy but, as yet, no single method is able to guarantee both a level of confidence comparable to experimental screening and a level of computing efficiency that could drastically cut the costs of early phase drug discovery campaigns. Here, we present VSM-G (virtual screening manager for computational grids), a virtual screening platform that combines several structure-based drug design tools. VSM-G aims to be as user-friendly as possible while retaining enough flexibility to accommodate other in silico techniques as they are developed. In order to illustrate VSM-G concepts, we present a proof-of-concept study of a fast geometrical matching method based on spherical harmonics expansions surfaces. This technique is implemented in VSM-G as the first module of a multiple-step sequence tailored for high-throughput experiments. We show that, using this protocol, notable enrichment of the input molecular database can be achieved against a specific target, here the liver-X nuclear receptor. The benefits, limitations and applicability of the VSM-G approach are discussed. Possible improvements of both the geometrical matching technique and its implementation within VSM-G are suggested.


Basic principle of the virtual screening funnel process.


Multiple-step virtual screening VSM-G Structure-based drug design Geometrical matching Spherical harmonics surfaces SHEF GOLD Molecular database enrichment 



We thank Yesmine Asses, Safia Kellou and Amel Maouche for their feedback. Alexandre Beautrait was supported by grants from INRIA (Institut National de Recherche en Informatique et en Automatique), Région Lorraine, and ARC (Association pour la Recherche sur le Cancer); Vincent Leroux by a post-doctoral fellowship from the INCa (Institut National du Cancer); Matthieu Chavent by a joint fellowship between CNRS (Centre National pour la Recherche Scientifique) and Région Lorraine. We thank Openeye for providing free access to OMEGA and VIDA software according to an academic license, Chemaxon for supplying MarvinBeans Java library, CCDC for the trial version of the GOLD program, and the laboratory of chemoinformatics at the Orléans University for the ScreeningAssistant program.


  1. 1.
    DiMasi JA, Hansen RW, Grabowski HG (2003) J Health Econ 22:151–185CrossRefGoogle Scholar
  2. 2.
    Shoichet BK (2004) Nature 432:862–865CrossRefGoogle Scholar
  3. 3.
    Stahura FL, Bajorath J (2004) Comb Chem High Throughput Screening 7:259–269Google Scholar
  4. 4.
    Perola E, Xu K, Kollmeyer TM, Kaufmann SH, Prendergast FG, Pang YP (2000) J Med Chem 43:401–408CrossRefGoogle Scholar
  5. 5.
    Grüneberg S, Stubbs MT, Klebe G (2002) J Med Chem 45:3588–3602CrossRefGoogle Scholar
  6. 6.
    Vangrevelinghe E, Zimmermann K, Schoepfer J, Portmann R, Fabbro D, Furet P (2003) J Med Chem 46:2656–2662CrossRefGoogle Scholar
  7. 7.
    Kraemer O, Hazemann I, Podjarny AD, Klebe G (2004) Proteins: Struct Funct Bioinf 55:814–823CrossRefGoogle Scholar
  8. 8.
    Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbail R, Stallings WC, Conolly DT, Shoichet BK (2002) J Med Chem 45:2213–2221CrossRefGoogle Scholar
  9. 9.
    Bajorath J (2002) Nat Rev Drug Discov 1:882–894CrossRefGoogle Scholar
  10. 10.
    Abagyan R, Totrov M (2001) Curr Opin Chem Biol 5:375–382CrossRefGoogle Scholar
  11. 11.
    Xu H, Agrafiotis DK (2002) Curr Top Med Chem 2:1305–1320CrossRefGoogle Scholar
  12. 12.
    Krovat EM, Langer T (2004) J Chem Inf Comput Sci 44:1123–1129CrossRefGoogle Scholar
  13. 13.
    Huo S, Wang J, Cieplak P, Kollman PA, Kuntz ID (2002) J Med Chem 45:1412–1419CrossRefGoogle Scholar
  14. 14.
    Jenwitheesuk E, Samudrala R (2003) BMC Struct Biol 3Google Scholar
  15. 15.
    Alonso H, Bliznyuk AA, Gready JE (2006) Med Res Rev 26:531–568CrossRefGoogle Scholar
  16. 16.
    Waszkowycz B, Perkins TDJ, Sykes RA, Li J (2001) IBM Syst J 40:360–376CrossRefGoogle Scholar
  17. 17.
    Bleicher KH, Böhm H-J, Müller K, Alanine AI (2003) Nat Rev Drug Discov 2:369–378CrossRefGoogle Scholar
  18. 18.
    Veselovsky AV, Ivanov AS (2003) Curr Drug Targets: Infect Disord 3:33–40CrossRefGoogle Scholar
  19. 19.
    Jain AN (2004) Curr Opin Drug Discov Dev 7:396–403Google Scholar
  20. 20.
    Ofran Y, Punta M, Schneider R, Rost B (2005) Drug Discov Today 10:1475–1482CrossRefGoogle Scholar
  21. 21.
    Dobson CM (2004) Nature 432:824–828CrossRefGoogle Scholar
  22. 22.
    Oprea TI, Gottfries J (2001) J Comb Chem 3:157–166CrossRefGoogle Scholar
  23. 23.
  24. 24.
  25. 25.
  26. 26.
    ChemAxon Ltd., Budapest, Hungary.
  27. 27.
    OpenEye Science Software: Santa Fe, NM.
  28. 28.
    Weininger D (1988) J Chem Inf Comput Sci 28:31–36CrossRefGoogle Scholar
  29. 29.
    Liao Q, Yao JH, Li F, Yuan SG, Doucet J-P, Panaye A, Fan BT (2004) SAR QSAR Environ Res 15:217–235CrossRefGoogle Scholar
  30. 30.
    Sadowski J (1993) Chem Rev 93:2567–2581CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall III WB, Snoeyink J, Richardson JS, Richardson DC (2007) Nucleic Acids Res 35: W375–W383 Google Scholar
  33. 33.
    Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) Nucleic Acids Res 33:W368–W371CrossRefGoogle Scholar
  34. 34.
    Neshich G, Mancini AL, Yamagishi ME, Kuser PR, Fileto R, Pinto IP, Palandrani JF, Krauchenco JN, Baudet C, Montagner AJ, Higa RH (2005) Nucleic Acids Res 33:D269–D274CrossRefGoogle Scholar
  35. 35.
    Cai W, Zhang M, Maigret B (1998) J Comput Chem 19:1805–1815CrossRefGoogle Scholar
  36. 36.
    Cai W, Shao X, Maigret B (2002) J Mol Graph Model 20:313–328CrossRefGoogle Scholar
  37. 37.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38CrossRefGoogle Scholar
  38. 38.
    Verdonk ML, Chessari G, Cole JC, Hartshorn MJ, Murray CW, Nissink JWM, Taylor RD, Taylor R (2005) J Med Chem 48:6504–6515CrossRefGoogle Scholar
  39. 39.
    Wong CF, Kua J, Zhang Y, Straatsma TP, McCammon JA (2005) Proteins: Struct Funct Bioinf 61:850–858CrossRefGoogle Scholar
  40. 40.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) J Comput Chem 26:1781–1802CrossRefGoogle Scholar
  41. 41.
    So S-S, Karplus M (2001) J Comput Aided Mol Des 15:613–647CrossRefGoogle Scholar
  42. 42.
    Lyne PD (2002) Drug Discov Today 7:1047–1055CrossRefGoogle Scholar
  43. 43.
    Wang J, Kollman PA, Kuntz ID (1999) Proteins: Struct Funct Genet 36:1–19CrossRefGoogle Scholar
  44. 44.
    Miteva MA, Lee WH, Montes MO, Villoutreix BO (2005) J Med Chem 48:6012–6022CrossRefGoogle Scholar
  45. 45.
    Leroux V, Maigret B (2007) Comput Appl Chem 24:1–10Google Scholar
  46. 46.
    Yamagishi MEB, Martins NF, Neshich G, Cai W, Shao X, Beautrait A, Maigret B (2006) J Mol Model 12:965–972CrossRefGoogle Scholar
  47. 47.
    Singh J, Chuaqui CE, Boriack-Sjodin PA, Lee WC, Pontz T, Corbley MJ, Cheung H-K, Arduini RM, Mead JN, Newman MN, Papadatos JL, Bowes S, Josiah S, Ling LE (2003) Bioorg Med Chem Lett 13:4355–4359CrossRefGoogle Scholar
  48. 48.
    Ritchie DW, Kemp GJL (1999) J Comput Chem 20:383–395CrossRefGoogle Scholar
  49. 49.
    Jones G, Willett P, Glen RC (1995) J Mol Biol 245:43–43CrossRefGoogle Scholar
  50. 50.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748CrossRefGoogle Scholar
  51. 51.
    Lala DS (2005) Curr Opin Investig Drugs 6:934–943Google Scholar
  52. 52.
    Collins JL (2004) Curr Opin Drug Discov Dev 7:692–702Google Scholar
  53. 53.
    Färnegårdh M, Bonn T, Sun S, Ljunggren J, Ahola H, Wilhelmsson A, Gustafsson J-Å, Carlquist M (2003) J Biol Chem 278:38821–38828CrossRefGoogle Scholar
  54. 54.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  55. 55.
    Williams S, Bledsoe RK, Collins JL, Boggs S, Lambert MH, Miller AB, Moore J, McKee DD, Moore L, Nichols J, Parks D, Watson M, Wisely B, Willson TM (2003) J Biol Chem 278:27138–27143CrossRefGoogle Scholar
  56. 56.
    Steiner T, Koellner G (1997) Chem Commun (Cambridge, UK) 13:1207–1208CrossRefGoogle Scholar
  57. 57.
    ChemDiv - The chemistry of cures.
  58. 58.
    Enamine - Smart chemistry solutions.
  59. 59.
    Albany Molecular Research - AMRIDirect chemical compound database.
  60. 60.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Delivery Rev 23:3–25CrossRefGoogle Scholar
  61. 61.
    Monge A, Arrault A, Marot C, Morin-Allory L (2006) Mol Divers 10:389–403CrossRefGoogle Scholar
  62. 62.
    Xue L, Godden J, Bajorath J (1999) J Chem Inf Comput Sci 39:881–886CrossRefGoogle Scholar
  63. 63.
    Tanimoto TT (1961) Trans NY Acad Sci 2:576–580Google Scholar
  64. 64.
    Hibert M, Haiech J (2000) M S Méd Sci 16:1332–1339Google Scholar
  65. 65.
    Chimiothèque Nationale.
  66. 66.
  67. 67.
    Koshland D Jr (1994) Angew Chem, Int Ed Engl 33:2375–2378CrossRefGoogle Scholar
  68. 68.
    Spearman C (1904) Am J Psychol 15:72–101CrossRefGoogle Scholar
  69. 69.
    Kendall M (1938) Biometrika 30:81–89Google Scholar
  70. 70.
    Mavridis L, Hudson BD, Ritchie DW (2007) J Chem Inf Model 47:1787–1796CrossRefGoogle Scholar
  71. 71.
    Massova I, Kollman PA (2000) Perspect Drug Discov Des 18:113–135CrossRefGoogle Scholar
  72. 72.
    Gilson MK, Zhou H-X (2007) Annu Rev Biophys Biomol Struct 36:21–42CrossRefGoogle Scholar
  73. 73.
    Marcou G, Rognan D (2007) J Chem Inf Model 47:195–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Alexandre Beautrait
    • 1
  • Vincent Leroux
    • 1
  • Matthieu Chavent
    • 1
  • Léo Ghemtio
    • 1
  • Marie-Dominique Devignes
    • 1
  • Malika Smaïl-Tabbone
    • 1
  • Wensheng Cai
    • 2
  • Xuegang Shao
    • 2
  • Gilles Moreau
    • 3
  • Peter Bladon
    • 4
  • Jianhua Yao
    • 5
  • Bernard Maigret
    • 1
  1. 1.Nancy UniversitéLORIA, Groupe ORPAILLEURVandœuvre-lès-Nancy CedexFrance
  2. 2.Department of ChemistryNankai UniversityTianjinPeople’s Republic of China
  3. 3.CharantonFrance
  4. 4.Interprobe Chemical ServicesGlasgowUK
  5. 5.Laboratory of Computer Chemistry and ChemoinformaticsShanghai Institute of Organic ChemistryShanghaiPeople’s Republic of China

Personalised recommendations