Advertisement

Journal of Molecular Modeling

, Volume 14, Issue 1, pp 29–37 | Cite as

G2, G3, and complete basis set calculations on the thermodynamic properties of triazane

  • Ryan M. Richard
  • David W. Ball
Original Paper

Abstract

As a follow-up study to our study on tetrazane (N4H6), we present computed thermodynamic properties of triazane (N3H5). Calculated properties include optimized geometries, infrared vibrations, enthalpy of formation, enthalpy of combustion, and proton affinities. We have also mapped the potential energy surface as the molecule is rotated about the N-N bond. We have predicted a specific enthalpy of combustion for triazane of about -20 kJ g−1.

Figure

Schematic diagram of the dielectric barrier discharge (left) and typical temporal profiles of voltage and current, as obtained from the simulations (right)

Keywords

G2 G3 CBS-QB3 CBS-APNO High energy materials Thermodynamic properties Triazane 

Notes

Acknowledgements

R. M. R. expresses appreciation to the Honors Program at Cleveland State University for their continued support.

References

  1. 1.
    Agrawal JP (1998) Prog Energy Comb Sci 24:1–30CrossRefGoogle Scholar
  2. 2.
    Politzer P, Lane P, Concha MC (2005) Computational determination of the energetics of boron and aluminum combustion reactions. In: Manaa MR (ed.), Chemistry at extreme conditions. Elsevier, Amsterdam, pp 473–493Google Scholar
  3. 3.
    Ball DW (2001) J Phys Chem A 105:465–470CrossRefGoogle Scholar
  4. 4.
    Schmitz E, Ohme R, Kozakiewicz G (1965) Z Anorgan Allge Chem 339:44–51CrossRefGoogle Scholar
  5. 5.
    Kim Y, Gilje JW, Seff J (1977) J Am Chem Soc 99:7057–7059CrossRefGoogle Scholar
  6. 6.
    Schlegel HB, Skancke A (1993) J Am Chem Soc 115:7465–7471CrossRefGoogle Scholar
  7. 7.
    Fujii T, Selvin CP, Sablier M, Iwase K (2002) J Phys Chem A 106:3102–3105CrossRefGoogle Scholar
  8. 8.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc, Pittsburgh PAGoogle Scholar
  9. 9.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, (2004) Gaussian 03. Gaussian Inc, Wallingford CTGoogle Scholar
  10. 10.
    Dennington II R, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) GaussView, Version 2.1. Semichem Inc, Shawnee Mission, KSGoogle Scholar
  11. 11.
    Dennington II R, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) GaussView, Version 3.09. Semichem Inc, Shawnee Mission, KSGoogle Scholar
  12. 12.
    Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230CrossRefGoogle Scholar
  13. 13.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776CrossRefGoogle Scholar
  14. 14.
    Ochterski JW, Petersson GA, Montgomery Jr JA (1996) J Chem Phys 104:2598–2619CrossRefGoogle Scholar
  15. 15.
    Gorelsky SI (2006) SWizard program, version 4.1. http://www.sgchem.net
  16. 16.
    NIST Chemistry Webbook, available at http://webbook.nist.gov/chemistry/. Accessed May 12, 2007
  17. 17.
    Richard RM, Ball DW (2006) J Mol Struct-THEOCHEM 776:89–96CrossRefGoogle Scholar
  18. 18.
    Richard RM, Ball DW (2007) J Mol Struct -THEOCHEM 806:113–120CrossRefGoogle Scholar
  19. 19.
    Richard RM, Ball DW (2007) J Mol Struct-THEOCHEM 806:165170Google Scholar
  20. 20.
    Richard RM, Ball DW (2007) J Mol Struct -THEOCHEM 814:91–98CrossRefGoogle Scholar
  21. 21.
    Lide DR (2001) CRC handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton, FL, p 5–89Google Scholar
  22. 22.
    Szulejko JE, McMahon TB (1993) J Am Chem Soc 115:7839–7848CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of ChemistryCleveland State UniversityClevelandUSA

Personalised recommendations