Journal of Molecular Modeling

, Volume 13, Issue 11, pp 1133–1139

The studies on substrate, product and inhibitor binding to a wild-type and neuronopathic form of human acid-β-glucosidase

  • Igor Z. Zubrzycki
  • Agnieszka Borcz
  • Magdalena Wiacek
  • Wojciech Hagner
Original Paper

Abstract

Gaucher disease is a lysosomal storage disorder caused by deficiency of human acid β-glucosidase. Recent x-ray structural elucidation of the enzyme alone and in the presence of its inhibitor was done, which provided an excellent template for further studies on the binding of substrate, product and inhibitor. To draw correlations between the clinical manifestation of the disease driven by point mutations, L444P and L444R, and the placement and function of putative S-binding sites, the presented theoretical studies were undertaken, which comprised of molecular dynamics and molecular docking methods. The obtained results indicate the D443 and D445 residues as extremely important for physiological functionality of an enzyme. They also show, although indirectly, that binding of the substrate is influenced by an interplay of E235 and E334 residues, constituting putative substrate binding site, and the region flanked by D435 and D445 residues.

Figure

The binding of an arbitrarily chosen structure of glucosylceramide (A), conduritol-β-epoxide (B), glucose (C) to the active site D443/D445 (A1, B1, C1) and E320/E340 (A2, B2, C2) of the wild-type structure of human acid-β-glucosidase. A1, B1, C1 blue mask represents the residues D443-D445; red mask represents the residue D444; A2, B2, C2 blue mask represents loop1 (Ser345-Glu349) and loop2 (Val394-Asp399), whereas red mask the residues E235 and 340

Keywords

Human acid-β-glucosidase Molecular dynamics Molecular docking S-binding place Mutations 

References

  1. 1.
    Erickson AH, Ginns EI, Barranger JA (1985) J Biol Chem 260:14319–14324Google Scholar
  2. 2.
    Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. The Royal Society of Chemistry, Cambridge, pp 3–12Google Scholar
  3. 3.
    Bergmann JE, Grabowski GA (1989) Am J Hum Genet 44:741–750Google Scholar
  4. 4.
    Grace ME, Newman KM, Scheinker V, Berg-Fussman A, Grabowski GA (1994) J Biol Chem 269:2283–2291Google Scholar
  5. 5.
    Sawkar AR, Cheng WC, Beutler E, Wong CH, Balch WE, Kelly JW (2002) Proc Natl Acad Sci (USA) 99:15428–15433CrossRefGoogle Scholar
  6. 6.
    Barranger JA, Ginns EI (1989) Glucosylceramide Lipidoses: Gaucher Disease, 6th ed. McGraw Hill Inc., New YorkGoogle Scholar
  7. 7.
    Takasaki S, Murray GJ, Furbisch FS, Brady RO, Baranger JA, Kobata A (1984) J Biol Chem 259:10112–10117Google Scholar
  8. 8.
    Berg-Fussman A, Grace ME, Grabowski GA (1993) J Biol Chem 268:14861–14866Google Scholar
  9. 9.
    Horowitz M, Zimran A (1994) Hum Mutat 3:1–11CrossRefGoogle Scholar
  10. 10.
    Fabrega S, Durand P, Mornon J-P, Lehn P (2002) J Soc Biol 196:151–160Google Scholar
  11. 11.
    Miao S, McCarter JD, Grace ME, Grabowski GA, Aebersold R, Withers SG (1994) J Biol Chem 269:10975–10978Google Scholar
  12. 12.
    Fabrega S, Durand P, Codogno P, Bauvy C, Delomenie C, Henrissat B, Martin BM, McKinney C, Ginns EI, Mornon JP, Lehn P (2000) Glycobiology 10:1217–1224CrossRefGoogle Scholar
  13. 13.
    Dvir H, Harel M, McCarthy AA, Toker L, Silman I, Futerman AH, Sussman JL (2003) EMBO Rep 4:704–709CrossRefGoogle Scholar
  14. 14.
    Premkumar L, Sawkar AR, Boldin-Adamsky S, Toker L, Silman I, Kelly JW, Futerman AH, Sussman JL (2005) J Biol Chem 280:23815–23819CrossRefGoogle Scholar
  15. 15.
    Morel N, Bon S, Greenblatt H, Wodak S, Sussman JL, Massoulie J, Silman I (1999) Mol Parmacol 55:982–992Google Scholar
  16. 16.
    Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723CrossRefGoogle Scholar
  17. 17.
    Berendsen HJ, Postma JP, van Gunsteren WF, Hermans J (1981) Intramolecular Forces, D. Reidel Publishing Company, DordrechtGoogle Scholar
  18. 18.
    Zubrzycki IZ (2002) Biophys J 82:2906–2915CrossRefGoogle Scholar
  19. 19.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Journal of Computational Physics 23:327CrossRefGoogle Scholar
  20. 20.
    Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81:3684CrossRefGoogle Scholar
  21. 21.
    Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) J Comput Chem 26:1701–1718CrossRefGoogle Scholar
  22. 22.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225–11236CrossRefGoogle Scholar
  23. 23.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38, 27–38CrossRefGoogle Scholar
  24. 24.
    DeLano W, The PyMOL Molecular Graphics System. 2002, DeLano Scientific, San CarlosGoogle Scholar
  25. 25.
    Hetenyi C, van der Spoel D (2006) FEBS Lett 580:1447–1450CrossRefGoogle Scholar
  26. 26.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639CrossRefGoogle Scholar
  27. 27.
    Sanner MF (1999) J Mol Graph Model 17:57–61Google Scholar
  28. 28.
    Kabsch W, Sander C (1983) Biopolymers 22:2577–2637CrossRefGoogle Scholar
  29. 29.
    Uchiyama A, Tomatsu S, Kondo N, Suzuki Y, Shimozawa N, Fukuda S, Sukegawa K, Taki N, Inamori H, Orii T (1994) Hum Mol Genet 3:1183–1184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Igor Z. Zubrzycki
    • 1
  • Agnieszka Borcz
    • 1
  • Magdalena Wiacek
    • 1
  • Wojciech Hagner
    • 2
  1. 1.Department of BiotechnologyUniversity of RzeszowKolbuszowaPoland
  2. 2.Department of Rehabilitation, Collegium MedicumNicolas Copernicus UniversityBydgoszczPoland

Personalised recommendations