Journal of Molecular Modeling

, Volume 13, Issue 10, pp 1033–1038 | Cite as

σ-hole bonding: molecules containing group VI atoms

  • Jane S. Murray
  • Pat Lane
  • Timothy Clark
  • Peter Politzer
Original Paper

Abstract

It has been observed both experimentally and computationally that some divalently-bonded Group VI atoms interact in a noncovalent but highly directional manner with nucleophiles. We show that this can readily be explained in terms of regions of positive electrostatic potential on the outer surfaces of such atoms, these regions being located along the extensions of their existing covalent bonds. These positive regions can interact attractively with the lone pairs of nucleophiles. The existence of such a positive region is attributed to the presence of a “σ-hole.” This term designates the electron-deficient outer lobe of a half-filled p bonding orbital on the Group VI atom. The positive regions become stronger as the electronegativity of the atom decreases and its polarizability increases, and as the groups to which it is covalently bonded become more electron-withdrawing. We demonstrate computationally that the σ-hole concept and the outer regions of positive electrostatic potential account for the existence, directionalities and strengths of the observed noncovalent interactions.

Figure

Calculated B3PW91/6-31G** electrostatic potential of F2S, computed on the 0.001 electrons/bohr3 contour of the electronic density. The sulfur atom is toward the reader; the red areas indicate the most positive potentials, reaching +34.4 kcal/mole, along the extensions of the F-S bonds. The purple region (negative) on the left and the one (not totally visible) on the right side of the sulfur are due to its nonbonded s and p electrons. The fluorines (top left and bottom left) also have negative regions of potential (purple areas)

Keywords

Directional noncovalent interactions Electrostatic potentials Group VI atoms σ-hole bonding 

References

  1. 1.
    Rosenfield RE Jr, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4860–4862CrossRefGoogle Scholar
  2. 2.
    Guru Row TN, Parthasarathy R (1981) J Am Chem Soc 103:477–479CrossRefGoogle Scholar
  3. 3.
    Glusker JP (1998) Topics Curr Chem 198:1–56CrossRefGoogle Scholar
  4. 4.
    Murray-Rust P, Motherwell WDS (1979) J Am Chem Soc 101:4374–4376CrossRefGoogle Scholar
  5. 5.
    Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) J Am Chem Soc 105:3206–3214CrossRefGoogle Scholar
  6. 6.
    Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308–4314CrossRefGoogle Scholar
  7. 7.
    Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Proc Nat Acad Sci 101:16789–16794CrossRefGoogle Scholar
  8. 8.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395CrossRefGoogle Scholar
  9. 9.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Mod 13:305–311CrossRefGoogle Scholar
  10. 10.
    Politzer P, Murray JS, Concha MC (2007) J Mol Mod, in press onlineGoogle Scholar
  11. 11.
    Bernard-Houplain MC, Sandorfy C (1973) Can J Chem 51:1075–1082, 3640–3646CrossRefGoogle Scholar
  12. 12.
    Di Paolo T, Sandorfy C (1974) Can J Chem 52:3612–3622CrossRefGoogle Scholar
  13. 13.
    Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem Int Ed 39:1782–1786CrossRefGoogle Scholar
  14. 14.
    Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem, Quantum Biol Symp 19:57–64CrossRefGoogle Scholar
  15. 15.
    Murray JS, Paulsen K, Politzer P (1994) Proc Indian Acad Sci (Chem Sci) 106:267–275Google Scholar
  16. 16.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  17. 17.
    Lide DR (ed) (2006) Handbook of chemistry and physics, 87th edn. CRC, Boca Raton, FLGoogle Scholar
  18. 18.
    Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) J Phys Chem A 104:1617–1620CrossRefGoogle Scholar
  19. 19.
    Romaniello P, Lelj F (2002) J Phys Chem A 106:9114–9119CrossRefGoogle Scholar
  20. 20.
    Guardigli C, Liantonio R, Mele MI, Metrangolo P, Resnati G, Pilati T (2003) Supramol Chem 15:177–188CrossRefGoogle Scholar
  21. 21.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  22. 22.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Mod 13:291–296CrossRefGoogle Scholar
  23. 23.
    Stewart RF (1972) J Chem Phys 57:1664–1668CrossRefGoogle Scholar
  24. 24.
    Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkGoogle Scholar
  25. 25.
    Iwaoka M, Komatsu H, KatsudaT, Tomoda S (2002) J Am Chem Soc 124:1902–1909, and papers citedCrossRefGoogle Scholar
  26. 26.
    Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH (2005) J Am Chem Soc 127:3184–3190CrossRefGoogle Scholar
  27. 27.
    Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) J Am Chem Soc 128:2666–2674CrossRefGoogle Scholar
  28. 28.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jane S. Murray
    • 1
  • Pat Lane
    • 2
  • Timothy Clark
    • 3
  • Peter Politzer
    • 1
    • 2
  1. 1.Department of ChemistryCleveland State UniversityClevelandUSA
  2. 2.Department of ChemistryUniversity of New OrleansNew OrleansUSA
  3. 3.Computer-Chemie-CentrumFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations